Mass Spectrometry-Based (GeLC-MS/MS) Comparative Proteomic Analysis of Endoscopically (ePFT) Collected Pancreatic and Gastroduodenal Fluids

DSpace/Manakin Repository

Mass Spectrometry-Based (GeLC-MS/MS) Comparative Proteomic Analysis of Endoscopically (ePFT) Collected Pancreatic and Gastroduodenal Fluids

Citable link to this page

 

 
Title: Mass Spectrometry-Based (GeLC-MS/MS) Comparative Proteomic Analysis of Endoscopically (ePFT) Collected Pancreatic and Gastroduodenal Fluids
Author: Kadiyala, Vivek; Paulo, Joao A.; Banks, Peter Alan; Steen, Hanno; Conwell, Darwin Lewis

Note: Order does not necessarily reflect citation order of authors.

Citation: Paulo, Joao A., Vivek Kadiyala, Peter A. Banks, Hanno Steen, and Darwin L. Conwell. 2012. Mass spectrometry-based (GeLC-MS/MS) comparative proteomic analysis of endoscopically (ePFT) collected pancreatic and gastroduodenal fluids. Clinical and Translational Gastroenterology 3(5): e14.
Full Text & Related Files:
Abstract: Objectives: The secretin-stimulated endoscopic pancreatic function test (ePFT) allows for the safe collection of gastroduodenal and pancreatic fluid from the duodenum. We test the hypothesis that these endoscopically collected fluids have different proteomes. As such, we aim to show that the ePFT method can be used to collect fluid enriched in pancreatic proteins to test for pancreatic function. Methods: Gastroduodenal and pancreatic fluid were collected sequentially from chronic pancreatitis patients undergoing an ePFT. Proteins from each fluid type were extracted using previously published optimized methods and subjected to GeLC-MS/MS analysis for protein identification and bioinformatics analysis. Results: Mass spectrometry analysis identified proteins that were exclusive in either gastroduodenal (46) or pancreatic fluid (234). Subsequent quantitative analysis revealed proteins that were differentially abundant with statistical significance. As expected, proteolytic enzymes and protease inhibitors were among the differentially detected proteins. The proteases pepsinogens and gastrin were enriched in gastroduodenal fluid, while common pancreatic enzymes (e.g., aminopeptidase N, chymotrypsin C, elastase-3A, trypsin, and carboxypeptidase A1, and elastase 2B) were found in greater abundance in pancreatic fluid. Similarly for protease inhibitors, members of the cystatin family were exclusive to gastroduodenal fluid, while serpins A11, B4, and D1 were exclusive to pancreatic fluid. Conclusions: We have shown that ePFT collection coupled with mass spectrometry can be used to identify differentially detected proteins in gastroduodenal and pancreatic fluids. The data obtained using GeLC-MS/MS techniques provide further evidence supporting the feasibility of using ePFT-collected fluid to study specific diseases of the upper gastrointestinal tract, such as chronic pancreatitis.
Published Version: doi:10.1038/ctg.2012.7
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367612/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10417563
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters