In silico labeling reveals the time-dependent label half-life and transit-time in dynamical systems

DSpace/Manakin Repository

In silico labeling reveals the time-dependent label half-life and transit-time in dynamical systems

Citable link to this page

 

 
Title: In silico labeling reveals the time-dependent label half-life and transit-time in dynamical systems
Author: Maiwald, Thomas; Blumberg, Julie; Raue, Andreas; Hengl, Stefan; Schilling, Marcel; Sy, Sherwin KB; Klingmüller, Ursula; Timmer, Jens; Becker, Verena

Note: Order does not necessarily reflect citation order of authors.

Citation: Maiwald, Thomas, Julie Blumberg, Andreas Raue, Stefan Hengl, Marcel Schilling, Sherwin KB Sy, Verena Becker, Ursula Klingmüller, and Jens Timmer. 2012. In silico labeling reveals the time-dependent label half-life and transit-time in dynamical systems. BMC Systems Biology 6: 13.
Full Text & Related Files:
Abstract: Background: Mathematical models of dynamical systems facilitate the computation of characteristic properties that are not accessible experimentally. In cell biology, two main properties of interest are (1) the time-period a protein is accessible to other molecules in a certain state - its half-life - and (2) the time it spends when passing through a subsystem - its transit-time. We discuss two approaches to quantify the half-life, present the novel method of in silico labeling, and introduce the label half-life and label transit-time. The developed method has been motivated by laboratory tracer experiments. To investigate the kinetic properties and behavior of a substance of interest, we computationally label this species in order to track it throughout its life cycle. The corresponding mathematical model is extended by an additional set of reactions for the labeled species, avoiding any double-counting within closed circuits, correcting for the influences of upstream fluxes, and taking into account combinatorial multiplicity for complexes or reactions with several reactants or products. A profile likelihood approach is used to estimate confidence intervals on the label half-life and transit-time. Results: Application to the JAK-STAT signaling pathway in Epo-stimulated BaF3-EpoR cells enabled the calculation of the time-dependent label half-life and transit-time of STAT species. The results were robust against parameter uncertainties. Conclusions: Our approach renders possible the estimation of species and label half-lives and transit-times. It is applicable to large non-linear systems and an implementation is provided within the PottersWheel modeling framework (http://www.potterswheel.de).
Published Version: doi:10.1186/1752-0509-6-13
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3395849/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10461891
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters