Improving data quality and supervision of antiretroviral therapy sites in Malawi: an application of Lot Quality Assurance Sampling

DSpace/Manakin Repository

Improving data quality and supervision of antiretroviral therapy sites in Malawi: an application of Lot Quality Assurance Sampling

Citable link to this page

 

 
Title: Improving data quality and supervision of antiretroviral therapy sites in Malawi: an application of Lot Quality Assurance Sampling
Author: Hedt-Gauthier, Bethany L; Tenthani, Lyson; Chimbwandira, Frank M; Makombe, Simon; Chirwa, Zengani; Schouten, Erik J; Jahn, Andreas; Mitchell, Shira Arkin; Pagano, Marcello

Note: Order does not necessarily reflect citation order of authors.

Citation: Hedt-Gauthier, Bethany L, Lyson Tenthani, Shira Mitchell, Frank M Chimbwandira, Simon Makombe, Zengani Chirwa, Erik J Schouten, Marcello Pagano, and Andreas Jahn. 2012. Improving data quality and supervision of antiretroviral therapy sites in Malawi: an application of lot quality assurance sampling. BMC Health Services Research 12:196.
Full Text & Related Files:
Abstract: Background: High quality program data is critical for managing, monitoring, and evaluating national HIV treatment programs. By 2009, the Malawi Ministry of Health had initiated more than 270,000 patients on HIV treatment at 377 sites. Quarterly supervision of these antiretroviral therapy (ART) sites ensures high quality care, but the time currently dedicated to exhaustive record review and data cleaning detracts from other critical components. The exhaustive record review is unlikely to be sustainable long term because of the resources required and increasing number of patients on ART. This study quantifies the current levels of data quality and evaluates Lot Quality Assurance Sampling (LQAS) as a tool to prioritize sites with low data quality, thus lowering costs while maintaining sufficient quality for program monitoring and patient care. Methods: In January 2010, a study team joined supervision teams at 19 sites purposely selected to reflect the variety of ART sites. During the exhaustive data review, the time allocated to data cleaning and data discrepancies were documented. The team then randomly sampled 76 records from each site, recording secondary outcomes and the time required for sampling. Results: At the 19 sites, only 1.2% of records had discrepancies in patient outcomes and 0.4% in treatment regimen. However, data cleaning took 28.5 hours in total, suggesting that data cleaning for all 377 ART sites would require over 350 supervision-hours quarterly. The LQAS tool accurately identified the sites with the low data quality, reduced the time for data cleaning by 70%, and allowed for reporting on secondary outcomes. Conclusions: Most sites maintained high quality records. In spite of this, data cleaning required significant amounts of time with little effect on program estimates of patient outcomes. LQAS conserves resources while maintaining sufficient data quality for program assessment and management to allow for quality patient care.
Published Version: doi:10.1186/1472-6963-12-196
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3411464/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10466000
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters