Show simple item record

dc.contributor.authorCooper, Robert J.
dc.contributor.authorSelb, Juliette J.
dc.contributor.authorGagnon, Louis
dc.contributor.authorPhillip, Dorte
dc.contributor.authorSchytz, Henrik W.
dc.contributor.authorIversen, Helle K.
dc.contributor.authorAshina, Messoud
dc.contributor.authorBoas, David A.
dc.date.accessioned2013-04-08T20:37:32Z
dc.date.issued2012
dc.identifier.citationCooper, Robert J., Juliette Selb, Louis Gagnon, Dorte Phillip, Henrik W. Schytz, Helle K. Iversen, Messoud Ashina, and David A. Boas. 2012. A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy. Frontiers in Neuroscience 6:147.en_US
dc.identifier.issn1662-4548en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:10513280
dc.description.abstractNear-infrared spectroscopy (NIRS) is susceptible to signal artifacts caused by relative motion between NIRS optical fibers and the scalp. These artifacts can be very damaging to the utility of functional NIRS, particularly in challenging subject groups where motion can be unavoidable. A number of approaches to the removal of motion artifacts from NIRS data have been suggested. In this paper we systematically compare the utility of a variety of published NIRS motion correction techniques using a simulated functional activation signal added to 20 real NIRS datasets which contain motion artifacts. Principle component analysis, spline interpolation, wavelet analysis, and Kalman filtering approaches are compared to one another and to standard approaches using the accuracy of the recovered, simulated hemodynamic response function (HRF). Each of the four motion correction techniques we tested yields a significant reduction in the mean-squared error (MSE) and significant increase in the contrast-to-noise ratio (CNR) of the recovered HRF when compared to no correction and compared to a process of rejecting motion-contaminated trials. Spline interpolation produces the largest average reduction in MSE (55%) while wavelet analysis produces the highest average increase in CNR (39%). On the basis of this analysis, we recommend the routine application of motion correction techniques (particularly spline interpolation or wavelet analysis) to minimize the impact of motion artifacts on functional NIRS data.en_US
dc.language.isoen_USen_US
dc.publisherFrontiers Media S.A.en_US
dc.relation.isversionofdoi:10.3389/fnins.2012.00147en_US
dc.relation.hasversionhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468891/pdf/en_US
dash.licenseLAA
dc.subjectnear-infrared spectroscopyen_US
dc.subjectfunctional near-infrared spectroscopyen_US
dc.subjectNIRSen_US
dc.subjectmotion artifacten_US
dc.subjecthemodynamic responseen_US
dc.titleA Systematic Comparison of Motion Artifact Correction Techniques for Functional Near-Infrared Spectroscopyen_US
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden_US
dc.relation.journalFrontiers in Neuroscienceen_US
dash.depositing.authorBoas, David A.
dc.date.available2013-04-08T20:37:32Z
dc.identifier.doi10.3389/fnins.2012.00147*
dash.contributor.affiliatedGagnon, Louis
dash.contributor.affiliatedSelb, Juliette J
dash.contributor.affiliatedBoas, David


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record