Characterization of the RpoN Regulon Reveals Differential Regulation of T6SS and New Flagellar Operons in Vibrio cholerae O37 Strain V52

DSpace/Manakin Repository

Characterization of the RpoN Regulon Reveals Differential Regulation of T6SS and New Flagellar Operons in Vibrio cholerae O37 Strain V52

Citable link to this page

 

 
Title: Characterization of the RpoN Regulon Reveals Differential Regulation of T6SS and New Flagellar Operons in Vibrio cholerae O37 Strain V52
Author: Dong, Tao; Mekalanos, John J.

Note: Order does not necessarily reflect citation order of authors.

Citation: Dong, Tao G., and John J. Mekalanos. 2012. Characterization of the RpoN regulon reveals differential regulation of T6SS and new flagellar operons in Vibrio cholerae O37 strain V52. Nucleic Acids Research 40(16): 7766-7775.
Full Text & Related Files:
Abstract: The alternative sigma factor RpoN is an essential colonization factor of Vibrio cholerae and controls important cellular functions including motility and type VI secretion (T6SS). The RpoN regulon has yet to be clearly defined in T6SS-active V. cholerae isolates, which use T6SS to target both bacterial competitors and eukaryotic cells. We hypothesize that T6SS-dependent secreted effectors are co-regulated by RpoN. To systemically identify RpoN-controlled genes, we used chromatin immunoprecipitation coupled with sequencing (ChIP-Seq) and transcriptome analysis (RNA-Seq) to determine RpoN-binding sites and RpoN-controlled gene expression. There were 68 RpoN-binding sites and 82 operons positively controlled by RpoN, among which 37 operons had ChIP-identified binding sites. A consensus RpoN-binding motif was identified with a highly conserved thymine (−14) and an AT-rich region in the middle between the hallmark RpoN-recognized motif GG(−24)/GC(−12). There were seven new RpoN-dependent promoters in the flagellar regions. We identified a small RNA, flaX, downstream of the major flagellin gene flaA. Mutation of flaX substantially reduced motility. In contrast to previous results, we report that RpoN positively regulates the expression of hcp operons and vgrG3 that encode T6SS secreted proteins but has no effect on the expression of the main T6SS cluster encoding sheath and other structural components.
Published Version: doi:10.1093/nar/gks567
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3439928/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10536040
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters