Computational inference of mRNA stability from histone modification and transcriptome profiles

DSpace/Manakin Repository

Computational inference of mRNA stability from histone modification and transcriptome profiles

Citable link to this page

 

 
Title: Computational inference of mRNA stability from histone modification and transcriptome profiles
Author: Wang, Chengyang; Tian, Rui; Zhao, Qian; Xu, Han; Meyer, Clifford; Li, Cheng; Zhang, Yong; Liu, Xiaole Shirley

Note: Order does not necessarily reflect citation order of authors.

Citation: Wang, Chengyang, Rui Tian, Qian Zhao, Han Xu, Clifford A. Meyer, Cheng Li, Yong Zhang, and X. Shirley Liu. 2012. Computational inference of mRNA stability from histone modification and transcriptome profiles. Nucleic Acids Research 40(14): 6414-6423.
Full Text & Related Files:
Abstract: Histone modifications play important roles in regulating eukaryotic gene expression and have been used to model expression levels. Here, we present a regression model to systematically infer mRNA stability by comparing transcriptome profiles with ChIP-seq of H3K4me3, H3K27me3 and H3K36me3. The results from multiple human and mouse cell lines show that the inferred unstable mRNAs have significantly longer 3′Untranslated Regions (UTRs) and more microRNA binding sites within 3′UTR than the inferred stable mRNAs. Regression residuals derived from RNA-seq, but not from GRO-seq, are highly correlated with the half-lives measured by pulse-labeling experiments, supporting the rationale of our inference. Whereas, the functions enriched in the inferred stable and unstable mRNAs are consistent with those from pulse-labeling experiments, we found the unstable mRNAs have higher cell-type specificity under functional constraint. We conclude that the systematical use of histone modifications can differentiate non-expressed mRNAs from unstable mRNAs, and distinguish stable mRNAs from highly expressed ones. In summary, we represent the first computational model of mRNA stability inference that compares transcriptome and epigenome profiles, and provides an alternative strategy for directing experimental measurements.
Published Version: doi:10.1093/nar/gks304
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3413115/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10576615
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters