Fiber Architecture in Remodeled Myocardium Revealed with a Quantitative Diffusion CMR Tractography Framework and Histological Validation

DSpace/Manakin Repository

Fiber Architecture in Remodeled Myocardium Revealed with a Quantitative Diffusion CMR Tractography Framework and Histological Validation

Citable link to this page

 

 
Title: Fiber Architecture in Remodeled Myocardium Revealed with a Quantitative Diffusion CMR Tractography Framework and Histological Validation
Author: Huang, Shuning; Thiagalingam, Aravinda; Jackowski, Marcel P; Mekkaoui, Choukri; Chen, Howard H; Dai, Guangping; Reese, Timothy G.; Kostis, William Jason; Maurovich-Horvat, Pal; Ruskin, Jeremy Neil; Hoffman, Udo; Sosnovik, David E.

Note: Order does not necessarily reflect citation order of authors.

Citation: Mekkaoui, Choukri, Shuning Huang, Howard H. Chen, Guangping Dai, Timothy G. Reese, William J. Kostis, Aravinda Thiagalingam, et al. 2012. Fiber architecture in remodeled myocardium revealed with a quantitative diffusion CMR tractography framework and histological validation. Journal of Cardiovascular Magnetic Resonance 14:70.
Full Text & Related Files:
Abstract: Background: The study of myofiber reorganization in the remote zone after myocardial infarction has been performed in 2D. Microstructural reorganization in remodeled hearts, however, can only be fully appreciated by considering myofibers as continuous 3D entities. The aim of this study was therefore to develop a technique for quantitative 3D diffusion CMR tractography of the heart, and to apply this method to quantify fiber architecture in the remote zone of remodeled hearts. Methods: Diffusion Tensor CMR of normal human, sheep, and rat hearts, as well as infarcted sheep hearts was performed ex vivo. Fiber tracts were generated with a fourth-order Runge-Kutta integration technique and classified statistically by the median, mean, maximum, or minimum helix angle (HA) along the tract. An index of tract coherence was derived from the relationship between these HA statistics. Histological validation was performed using phase-contrast microscopy. Results: In normal hearts, the subendocardial and subepicardial myofibers had a positive and negative HA, respectively, forming a symmetric distribution around the midmyocardium. However, in the remote zone of the infarcted hearts, a significant positive shift in HA was observed. The ratio between negative and positive HA variance was reduced from 0.96 ± 0.16 in normal hearts to 0.22 ± 0.08 in the remote zone of the remodeled hearts (p<0.05). This was confirmed histologically by the reduction of HA in the subepicardium from −52.03° ± 2.94° in normal hearts to −37.48° ± 4.05° in the remote zone of the remodeled hearts (p < 0.05). Conclusions: A significant reorganization of the 3D fiber continuum is observed in the remote zone of remodeled hearts. The positive (rightward) shift in HA in the remote zone is greatest in the subepicardium, but involves all layers of the myocardium. Tractography-based quantification, performed here for the first time in remodeled hearts, may provide a framework for assessing regional changes in the left ventricle following infarction.
Published Version: doi:10.1186/1532-429X-14-70
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3506570/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10579224
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters