Association Test Based on SNP Set: Logistic Kernel Machine Based Test vs. Principal Component Analysis

DSpace/Manakin Repository

Association Test Based on SNP Set: Logistic Kernel Machine Based Test vs. Principal Component Analysis

Citable link to this page

 

 
Title: Association Test Based on SNP Set: Logistic Kernel Machine Based Test vs. Principal Component Analysis
Author: Chen, Feng; Zhai, Rihong; Lin, Xihong; Christiani, David C.; Diao, Nancy; Zhao, Yang

Note: Order does not necessarily reflect citation order of authors.

Citation: Zhao, Yang, Feng Chen, Rihong Zhai, Xihong Lin, Nancy Diao, and David C. Christiani. 2012. Association test based on SNP set: logistic kernel machine based test vs. principal component analysis. PLoS ONE 7(9): e44978.
Full Text & Related Files:
Abstract: GWAS has facilitated greatly the discovery of risk SNPs associated with complex diseases. Traditional methods analyze SNP individually and are limited by low power and reproducibility since correction for multiple comparisons is necessary. Several methods have been proposed based on grouping SNPs into SNP sets using biological knowledge and/or genomic features. In this article, we compare the linear kernel machine based test (LKM) and principal components analysis based approach (PCA) using simulated datasets under the scenarios of 0 to 3 causal SNPs, as well as simple and complex linkage disequilibrium (LD) structures of the simulated regions. Our simulation study demonstrates that both LKM and PCA can control the type I error at the significance level of 0.05. If the causal SNP is in strong LD with the genotyped SNPs, both the PCA with a small number of principal components (PCs) and the LKM with kernel of linear or identical-by-state function are valid tests. However, if the LD structure is complex, such as several LD blocks in the SNP set, or when the causal SNP is not in the LD block in which most of the genotyped SNPs reside, more PCs should be included to capture the information of the causal SNP. Simulation studies also demonstrate the ability of LKM and PCA to combine information from multiple causal SNPs and to provide increased power over individual SNP analysis. We also apply LKM and PCA to analyze two SNP sets extracted from an actual GWAS dataset on non-small cell lung cancer.
Published Version: doi:10.1371/journal.pone.0044978
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3441747/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10587975
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters