Loss of ATM kinase activity leads to embryonic lethality in mice

DSpace/Manakin Repository

Loss of ATM kinase activity leads to embryonic lethality in mice

Citable link to this page

 

 
Title: Loss of ATM kinase activity leads to embryonic lethality in mice
Author: Daniel, Jeremy A.; Pellegrini, Manuela; Lee, Baeck-Seung; Guo, Zhi; Filsuf, Darius; Belkina, Natalya V.; You, Zhongsheng; Paull, Tanya T.; Sleckman, Barry P.; Feigenbaum, Lionel; Nussenzweig, André

Note: Order does not necessarily reflect citation order of authors.

Citation: Daniel, Jeremy A., Manuela Pellegrini, Baeck-Seung Lee, Zhi Guo, Darius Filsuf, Natalya V. Belkina, Zhongsheng You, et al. 2012. Loss of atm kinase activity leads to embryonic lethality in mice. The Journal of Cell Biology 198(3): 295-304.
Full Text & Related Files:
Abstract: Ataxia telangiectasia (A-T) mutated (ATM) is a key deoxyribonucleic acid (DNA) damage signaling kinase that regulates DNA repair, cell cycle checkpoints, and apoptosis. The majority of patients with A-T, a cancer-prone neurodegenerative disease, present with null mutations in Atm. To determine whether the functions of ATM are mediated solely by its kinase activity, we generated two mouse models containing single, catalytically inactivating point mutations in Atm. In this paper, we show that, in contrast to Atm-null mice, both D2899A and Q2740P mutations cause early embryonic lethality in mice, without displaying dominant-negative interfering activity. Using conditional deletion, we find that the D2899A mutation in adult mice behaves largely similar to Atm-null cells but shows greater deficiency in homologous recombination (HR) as measured by hypersensitivity to poly (adenosine diphosphate-ribose) polymerase inhibition and increased genomic instability. These results may explain why missense mutations with no detectable kinase activity are rarely found in patients with classical A-T. We propose that ATM kinase-inactive missense mutations, unless otherwise compensated for, interfere with HR during embryogenesis.
Published Version: doi:10.1083/jcb.201204035
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3413361/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10588151
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters