White matter correlates of cognitive domains in normal aging with diffusion tensor imaging

DSpace/Manakin Repository

White matter correlates of cognitive domains in normal aging with diffusion tensor imaging

Citable link to this page

 

 
Title: White matter correlates of cognitive domains in normal aging with diffusion tensor imaging
Author: Sasson, Efrat; Doniger, Glen M.; Pasternak, Ofer; Tarrasch, Ricardo; Assaf, Yaniv

Note: Order does not necessarily reflect citation order of authors.

Citation: Sasson, Efrat, Glen M. Doniger, Ofer Pasternak, Ricardo Tarrasch, and Yaniv Assaf. 2013. White matter correlates of cognitive domains in normal aging with diffusion tensor imaging. Frontiers in Neuroscience 7:32.
Full Text & Related Files:
Abstract: The ability to perform complex as well as simple cognitive tasks engages a network of brain regions that is mediated by the white matter fiber bundles connecting them. Different cognitive tasks employ distinctive white matter fiber bundles. The temporal lobe and its projections subserve a variety of key functions known to deteriorate during aging. In a cohort of 52 healthy subjects (ages 25–82 years), we performed voxel-wise regression analysis correlating performance in higher-order cognitive domains (executive function, information processing speed, and memory) with white matter integrity, as measured by diffusion tensor imaging (DTI) fiber tracking in the temporal lobe projections [uncinate fasciculus (UF), fornix, cingulum, inferior longitudinal fasciculus (ILF), and superior longitudinal fasciculus (SLF)]. The fiber tracts were spatially registered and statistical parametric maps were produced to spatially localize the significant correlations. Results showed that performance in the executive function domain is correlated with DTI parameters in the left SLF and right UF; performance in the information processing speed domain is correlated with fractional anisotropy (FA) in the left cingulum, left fornix, right and left ILF and SLF; and the memory domain shows significant correlations with DTI parameters in the right fornix, right cingulum, left ILF, left SLF and right UF. These findings suggest that DTI tractography enables anatomical definition of region of interest (ROI) for correlation of behavioral parameters with diffusion indices, and functionality can be correlated with white matter integrity.
Published Version: doi:10.3389/fnins.2013.00032
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3595518/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10605429
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters