Mechanistic Studies of Gemcitabine-Loaded Nanoplatforms in Resistant Pancreatic Cancer Cells

DSpace/Manakin Repository

Mechanistic Studies of Gemcitabine-Loaded Nanoplatforms in Resistant Pancreatic Cancer Cells

Citable link to this page

 

 
Title: Mechanistic Studies of Gemcitabine-Loaded Nanoplatforms in Resistant Pancreatic Cancer Cells
Author: Papa, Anne-Laure M A; Basu, Sudipta; Sengupta, Poulomi; Banerjee, Deboshri; Sengupta, Shiladitya; Harfouche, Rania

Note: Order does not necessarily reflect citation order of authors.

Citation: Papa, Anne-Laure, Sudipta Basu, Poulomi Sengupta, Deboshri Banerjee, Shiladitya Sengupta, and Rania Harfouche. 2012. Mechanistic studies of gemcitabine-loaded nanoplatforms in resistant pancreatic cancer cells. BMC Cancer 12: 419.
Full Text & Related Files:
Abstract: Background: Pancreatic cancer remains the deadliest of all cancers, with a mortality rate of 91%. Gemcitabine is considered the gold chemotherapeutic standard, but only marginally improves life-span due to its chemical instability and low cell penetrance. A new paradigm to improve Gemcitabine’s therapeutic index is to administer it in nanoparticles, which favour its delivery to cells when under 500 nm in diameter. Although promising, this approach still suffers from major limitations, as the choice of nanovector used as well as its effects on Gemcitabine intracellular trafficking inside pancreatic cancer cells remain unknown. A proper elucidation of these mechanisms would allow for the elaboration of better strategies to engineer more potent Gemcitabine nanotherapeutics against pancreatic cancer. Methods: Gemcitabine was encapsulated in two types of commonly used nanovectors, namely poly(lactic-co-glycolic acid) (PLGA) and cholesterol-based liposomes, and their physico-chemical parameters assessed in vitro. Their mechanisms of action in human pancreatic cells were compared with those of the free drug, and with each others, using cytotoxity, apoptosis and ultrastructural analyses. Results: Physico-chemical analyses of both drugs showed high loading efficiencies and sizes of less than 200 nm, as assessed by dynamic light scattering (DLS) and transmission electron microscopy (TEM), with a drug release profile of at least one week. These profiles translated to significant cytotoxicity and apoptosis, as well as distinct intracellular trafficking mechanisms, which were most pronounced in the case of PLGem showing significant mitochondrial, cytosolic and endoplasmic reticulum stresses. Conclusions: Our study demonstrates how the choice of nanovector affects the mechanisms of drug action and is a crucial determinant of Gemcitabine intracellular trafficking and potency in pancreatic cancer settings.
Published Version: doi:10.1186/1471-2407-12-419
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3543259/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10708069
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters