What Can Gauge-Gravity Duality Teach Us about Condensed Matter Physics?

DSpace/Manakin Repository

What Can Gauge-Gravity Duality Teach Us about Condensed Matter Physics?

Citable link to this page


Title: What Can Gauge-Gravity Duality Teach Us about Condensed Matter Physics?
Author: Sachdev, Subir
Citation: Sachdev, Subir. 2012. What can gauge-gravity duality teach us about condensed matter physics? Annual Review of Condensed Matter Physics 3:9-33.
Full Text & Related Files:
Abstract: I discuss the impact of gauge-gravity duality on our understanding of two classes of systems: conformal quantum matter and compressible quantum matter. The first conformal class includes systems, such as the boson Hubbard model in two spatial dimensions, which display quantum critical points described by conformal field theories. Questions associated with non-zero temperature dynamics and transport are difficult to answer using conventional field theoretic methods. I argue that many of these can be addressed systematically using gauge-gravity duality, and discuss the prospects for reliable computation of low frequency correlations. Compressible quantum matter is characterized by the smooth dependence of the charge density, associated with a global U(1) symmetry, upon a chemical potential. Familiar examples are solids, superfluids, and Fermi liquids, but there are more exotic possibilities involving deconfined phases of gauge fields in the presence of Fermi surfaces. I survey the compressible systems studied using gauge-gravity duality, and discuss their relationship to the condensed matter classification of such states. The gravity methods offer hope of a deeper understanding of exotic and strongly-coupled compressible quantum states.
Published Version: doi:10.1146/annurev-conmatphys-020911-125141
Other Sources: http://arxiv.org/abs/1108.1197
Terms of Use: This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10859831
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search