Deep-Water Incised Valley Deposits at the Ediacaran-Cambrian Boundary in Southern Namibia Contain Abundant Treptichnus Pedum

DSpace/Manakin Repository

Deep-Water Incised Valley Deposits at the Ediacaran-Cambrian Boundary in Southern Namibia Contain Abundant Treptichnus Pedum

Citable link to this page

 

 
Title: Deep-Water Incised Valley Deposits at the Ediacaran-Cambrian Boundary in Southern Namibia Contain Abundant Treptichnus Pedum
Author: Knoll, Andrew Herbert; Wilson, Jonathan P.; Grotzinger, John P.; Fischer, Woodward W.; Hand, Kevin P.; Jensen, Sören; Abelson, John; Metz, Joannah M.; McLoughlin, Nicola; Cohen, Phoebe A.; Tice, Michael M.

Note: Order does not necessarily reflect citation order of authors.

Citation: Wilson, Jonathan P., John P. Grotzinger, Woodward W. Fischer, Kevin P. Hand, Sören Jensen, Andrew Herbert Knoll, John Abelson, and et al. 2012. Deep-water incised valley deposits at the Ediacaran-Cambrian boundary in southern Namibia contain abundant Treptichnus pedum. Palaios 27(4): 252-273.
Full Text & Related Files:
Abstract: Valley-filling deposits of the Nama Group, southern Namibia, record two episodes of erosional downcutting and backfill, developed close together in time near the Ediacaran-Cambrian boundary. Geochronological constraints indicate that the older valley fill began \(539.4 \pm 1 Ma\) or later; the younger of these deposits contains unusually well-preserved populations of the basal Cambrian trace fossil Treptichnus pedum. Facies analysis shows that T. pedum is closely linked to a nearshore sandstone deposit, indicating a close environmental or taphonomic connection to very shallow, mud-draped sandy seafloor swept by tidal currents. Facies restriction may limit the biostratigraphic potential of T. pedum in Namibia and elsewhere, but it also illuminates functional and ecological interpretation. The T. pedum tracemaker was a motile bilaterian animal that lived below the sediment-water interface—propelling itself forward in upward-curving projections that breached the sediment surface. The T. pedum animal, therefore, lived infaunally, perhaps to avoid predation, surfacing regularly to feed and take in oxygen. Alternatively, the T. pedum animal may have been a deposit feeder that surfaced largely for purposes of gas exchange, an interpretation that has some support in the observed association of T. pedum with mud drapes. Treptichnus pedum provides our oldest record of animals that combined anatomical and behavioral complexity. Insights from comparative biology suggest that basal Cambrian T. pedum animals already possessed the anatomical, neurological, and genetic complexity needed to enable the body plan and behavioral diversification recorded by younger Cambrian fossils.
Published Version: doi:10.2110/palo.2011.p11-036r
Terms of Use: This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10860683
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters