Total Syntheses of Fastigiatine and the Hibarimicin Aglycons
Author
Metadata
Show full item recordCitation
Liau, Brian Bor-Jen. 2013. Total Syntheses of Fastigiatine and the Hibarimicin Aglycons. Doctoral dissertation, Harvard University.Abstract
Part one of this two-part thesis describes my efforts toward the total syntheses of the complex polycyclic alkaloids himeradine A and fastigiatine, which are members of the Lycopodium family of natural products. A cascade reaction sequence featuring a biosynthesis-inspired transannular Mannich reaction was planned to construct the strained and densely functionalized pentacyclic cores of the molecules from acyclic starting materials. After difficulties were encountered in a first-generation synthesis plan toward himeradine A, a second-generation synthesis plan was eventually successful in accomplishing the first total synthesis of fastigiatine via a formal [3+3]-cycloaddition reaction and a retro-aldol tandem transannular Mannich reaction sequence. In part two of this thesis, syntheses of the hibarimicin aglycons, including HMP-Y1, atrop-HMP-Y1, hibarimicinone, atrop-hibarimicinone, and HMP-P1, are reported. These natural products are amongst the largest and most complex type-II polyketides isolated. A novel benzylic fluoride Michael-Claisen reaction sequence was developed to construct the complete carbon skeleton of HMP-Y1 and atrop-HMP-Y1 via a symmetrical bidirectional double annulation reaction. Through efforts to convert HMP-Y1 derivatives to hibarimicinone and HMP-P1, a biomimetic mono-oxidation to desymmetrize protected HMP-Y1 was realized. A bidirectional unsymmetrical double annulation and biomimetic etherification were developed to construct the polycyclic and highly-oxidized skeleton of hibarimicinone, atrop-hibarimicinone, and HMP-P1. Lastly, a pH-dependent rotational barrier about the C2-C2' bond of hibarimicinone was discovered, which provides valuable information for achieving the syntheses of the glycosylated congeners of hibarimicinone.Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11148287
Collections
- FAS Theses and Dissertations [5858]
Contact administrator regarding this item (to report mistakes or request changes)