Using Physiology to Predict the Responses of Ants to Climatic Warming

DSpace/Manakin Repository

Using Physiology to Predict the Responses of Ants to Climatic Warming

Citable link to this page

 

 
Title: Using Physiology to Predict the Responses of Ants to Climatic Warming
Author: Diamond, Sarah E.; Penick, Clint; Pelini, Shannon L.; Ellison, Aaron M.

Note: Order does not necessarily reflect citation order of authors.

Citation: Sarah E. Diamond, Clint Penick, Shannon L. Pelini, Aaron M. Ellison, Nicholas J. Gotelli, Nathan J. Sanders, Robert R. Dunn. Forthcoming. Using physiology to predict the responses of ants to climatic warming. Integrative and Comparative Biology.
Full Text & Related Files:
Abstract: Physiological intolerance of high temperatures places limits on organismal responses to the temperature increases associated with global climatic change. Because ants are geographically widespread, ecologically diverse, and thermophilic, they are an ideal system for exploring the extent to which physiological tolerance can predict responses to environmental change. Here we expand on simple models that use thermal tolerance to predict the responses of ants to climatic warming. We investigated the degree to which changes in the abundance of ants under warming reflect reductions in the thermal niche space for their foraging. In an eastern deciduous forest system in the United States with ~40 ant species, we found that for some species, the loss of thermal niche space for foraging was related to decreases in abundance with increasing experimental climatic warming. However, many ant species exhibited no loss of thermal niche space. For one well-studied species, Temnothorax curvispinosus, we examined both survival of workers and growth of colonies (a correlate of reproductive output) as functions of temperature in the laboratory, and found that the range of thermal tolerances for colony growth was much narrower than for survival of workers. We evaluated these functions in the context of experimental climatic warming and found that the difference in the responses of these two attributes to temperature generates differences in the means and especially the variances of expected fitness under warming. The expected mean growth of colonies was optimized at intermediate levels of warming (2 – 4 °C above ambient), yet the expected variance monotonically increased with warming. In contrast, the expected mean and variance of the survival of workers decreased when warming exceeded 4°C above ambient. Together, these results for T. curvispinosus emphasize the importance of measuring reproduction (colony growth) in context of climatic change: indeed, our examination of the loss of thermal niche space with the larger species pool could be missing much of the warming impact due to these analyses being based on survival rather than reproduction. We suggest that while physiological tolerance of temperature can be a useful predictive tool for modeling responses to climatic change, future efforts should be devoted to understanding the causes and consequences of variability in models of tolerance calibrated with different metrics of performance and fitness.
Published Version: doi:10.1093/icb/ict085
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:11148824
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters