Phenotypes and genetic mechanisms of C. elegans enhanced RNAi

DSpace/Manakin Repository

Phenotypes and genetic mechanisms of C. elegans enhanced RNAi

Citable link to this page

 

 
Title: Phenotypes and genetic mechanisms of C. elegans enhanced RNAi
Author: Zhuang, Jimmy Jiajia
Citation: Zhuang, Jimmy Jiajia. 2013. Phenotypes and genetic mechanisms of C. elegans enhanced RNAi. Doctoral dissertation, Harvard University.
Full Text & Related Files:
Abstract: RNA interference (RNAi) potently and specifically induces gene knockdown, and its potential for reverse genetics in Caenorhabditis elegans is enormous. However, even in these nematodes, RNAi can be induced more effectively via enhanced RNAi (Eri) mutant backgrounds. With advances in small RNA sequencing, evidence has suggested that the eri pathway plays an endogenous gene regulatory role, which competes with experimentally introduced RNAi triggers for limiting resources. However, the nature, cellular location, and physiological consequences of this small RNA pathways competition remain unclear. To answer these questions, I first fully characterized the genetic phenotypes of all known Eri mutants. I discovered that different components of the eri pathway have subtle differences upon mutation, which affects more than exogenous RNAi. I then attempted to screen for novel enhanced RNAi mutants, guided by hypothetical mechanisms or tissues of expression not associated with known mutants. After these attempts, I fully characterized the genetic mechanisms that account for enhanced RNAi. Surprisingly, I discovered that the nuclear Argonaute nrde-3 and the peri-nuclear P-granule component pgl-1 are necessary and sufficient for an Eri response. Finally, I examined the impact of the competition among microRNA, endogenous siRNA, and exogenous RNAi pathways. I discovered that C. elegans develops slower upon perturbations to its normal flux of small RNA pathways. Insights from these phenotypes and genetic mechanisms shed light on the importance of small RNA biology and offer a novel suite of tools for sensitizing RNAi in broader contexts, especially given the deep evolutionary conservation of most eri-associated genes.
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:11156680
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters