Computational and Experimental Approaches For Evaluating the Genetic Basis of Mitochondrial Disorders

DSpace/Manakin Repository

Computational and Experimental Approaches For Evaluating the Genetic Basis of Mitochondrial Disorders

Citable link to this page

 

 
Title: Computational and Experimental Approaches For Evaluating the Genetic Basis of Mitochondrial Disorders
Author: Lieber, Daniel Solomon
Citation: Lieber, Daniel Solomon. 2013. Computational and Experimental Approaches For Evaluating the Genetic Basis of Mitochondrial Disorders. Doctoral dissertation, Harvard University.
Full Text & Related Files:
Abstract: Mitochondria are responsible for many fundamental biological pathways and metabolic processes, including aerobic ATP production by the mitochondrial respiratory chain. In humans, mitochondrial dysfunction can lead to severe disorders of energy metabolism, which are collectively referred to as mitochondrial disorders and affect approximately 1:5,000 individuals. These disorders are clinically heterogeneous and can affect multiple organ systems, often within a single individual. Symptoms can include myopathy, exercise intolerance, hearing loss, blindness, stroke, seizures, diabetes, and GI dysmotility. Mutations in over 150 genes in the mitochondrial DNA (mtDNA) and nuclear genome are known to cause mitochondrial diseases and an additional ~1,000 nuclear-encoded mitochondrial proteins have the potential to underlie mitochondrial disorders but have not yet been linked to human disease. As a result, determining a molecular diagnosis for patients with suspected mitochondrial disorders remains a challenge.
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:11158264
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters