Using Family-Based Imputation in Genome-Wide Association Studies with Large Complex Pedigrees: The Framingham Heart Study

DSpace/Manakin Repository

Using Family-Based Imputation in Genome-Wide Association Studies with Large Complex Pedigrees: The Framingham Heart Study

Citable link to this page

 

 
Title: Using Family-Based Imputation in Genome-Wide Association Studies with Large Complex Pedigrees: The Framingham Heart Study
Author: Chen, Ming-Huei; Huang, Jie; Chen, Wei-Min; Larson, Martin G.; Fox, Caroline; Vasan, Ramachandran S.; Seshadri, Sudha; O'Donnell, Christopher Joseph; Yang, Qiong

Note: Order does not necessarily reflect citation order of authors.

Citation: Chen, Ming-Huei, Jie Huang, Wei-Min Chen, Martin G. Larson, Caroline S. Fox, Ramachandran S. Vasan, Sudha Seshadri, Christopher Joseph O’Donnell, and Qiong Yang. 2012. Using family-based imputation in genome-wide association studies with large complex pedigrees: the Framingham Heart Study. PLoS ONE 7(12): e51589.
Full Text & Related Files:
Abstract: Imputation has been widely used in genome-wide association studies (GWAS) to infer genotypes of un-genotyped variants based on the linkage disequilibrium in external reference panels such as the HapMap and 1000 Genomes. However, imputation has only rarely been performed based on family relationships to infer genotypes of un-genotyped individuals. Using 8998 Framingham Heart Study (FHS) participants genotyped with Affymetrix 550K SNPs, we imputed genotypes of same set of SNPs for additional 3121 participants, most of whom were never genotyped due to lack of DNA sample. Prior to imputation, 122 pedigrees were too large to be handled by the imputation software Merlin. Therefore, we developed a novel pedigree splitting algorithm that can maximize the number of genotyped relatives for imputing each un-genotyped individual, while keeping new sub-pedigrees under a pre-specified size. In GWAS of four phenotypes available in FHS (Alzheimer disease, circulating levels of fibrinogen, high-density lipoprotein cholesterol, and uric acid), we compared results using genotyped individuals only with results using both genotyped and imputed individuals. We studied the impact of applying different imputation quality filtering thresholds on the association results and did not found a universal threshold that always resulted in a more significant p-value for previously identified loci. However most of these loci had a lower p-value when we only included imputed genotypes with with ≥60% SNP- and ≥50% person-specific imputation certainty. In summary, we developed a novel algorithm for splitting large pedigrees for imputation and found a plausible imputation quality filtering threshold based on FHS. Further examination may be required to generalize this threshold to other studies.
Published Version: doi:10.1371/journal.pone.0051589
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3524237/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:11181044
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters