Performance Introspection of Graph Databases
Citation
Macko, Peter, Daniel Margo, and Margo Seltzer. 2013. Performance introspection of graph databases. In Proceedings of the 6th international systems and storage conference, ed. Mary Baker and Sivan Toledo, Haifa, Israel: Association for Computing Machinery.Abstract
The explosion of graph data in social and biological networks, recommendation systems, provenance databases, etc. makes graph storage and processing of paramount importance. We present a performance introspection framework for graph databases, PIG, which provides both a toolset and methodology for understanding graph database performance. PIG consists of a hierarchical collection of benchmarks that compose to produce performance models; the models provide a way to illuminate the strengths and weaknesses of a particular implementation. The suite has three layers of benchmarks: primitive operations, composite access patterns, and graph algorithms. While the framework could be used to compare different graph database systems, its primary goal is to help explain the observed performance of a particular system. Such introspection allows one to evaluate the degree to which systems exploit their knowledge of graph access patterns. We present both the PIG methodology and infrastructure and then demonstrate its efficacy by analyzing the popular Neo4j and DEX graph databases.Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAPCitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11205389
Collections
- FAS Scholarly Articles [17574]
Contact administrator regarding this item (to report mistakes or request changes)
Comments made during the workflow steps
In QSDB.