Using Whole-Genome Sequence Data to Predict Quantitative Trait Phenotypes in Drosophila melanogaster

DSpace/Manakin Repository

Using Whole-Genome Sequence Data to Predict Quantitative Trait Phenotypes in Drosophila melanogaster

Citable link to this page

 

 
Title: Using Whole-Genome Sequence Data to Predict Quantitative Trait Phenotypes in Drosophila melanogaster
Author: Ober, Ulrike; Stone, Eric A.; Richards, Stephen; Zhu, Dianhui; Gibbs, Richard A.; Stricker, Christian; Gianola, Daniel; Schlather, Martin; Mackay, Trudy F. C.; Simianer, Henner; Ayroles, Julien

Note: Order does not necessarily reflect citation order of authors.

Citation: Ober, Ulrike, Julien F. Ayroles, Eric A. Stone, Stephen Richards, Dianhui Zhu, Richard A. Gibbs, Christian Stricker, et al. 2012. Using whole-genome sequence data to predict quantitative trait phenotypes in drosophila melanogaster. PLoS Genetics 8(5): e1002685
Full Text & Related Files:
Abstract: Predicting organismal phenotypes from genotype data is important for plant and animal breeding, medicine, and evolutionary biology. Genomic-based phenotype prediction has been applied for single-nucleotide polymorphism (SNP) genotyping platforms, but not using complete genome sequences. Here, we report genomic prediction for starvation stress resistance and startle response in Drosophila melanogaster, using ∼2.5 million SNPs determined by sequencing the Drosophila Genetic Reference Panel population of inbred lines. We constructed a genomic relationship matrix from the SNP data and used it in a genomic best linear unbiased prediction (GBLUP) model. We assessed predictive ability as the correlation between predicted genetic values and observed phenotypes by cross-validation, and found a predictive ability of 0.239±0.008 (0.230±0.012) for starvation resistance (startle response). The predictive ability of BayesB, a Bayesian method with internal SNP selection, was not greater than GBLUP. Selection of the 5% SNPs with either the highest absolute effect or variance explained did not improve predictive ability. Predictive ability decreased only when fewer than 150,000 SNPs were used to construct the genomic relationship matrix. We hypothesize that predictive power in this population stems from the SNP–based modeling of the subtle relationship structure caused by long-range linkage disequilibrium and not from population structure or SNPs in linkage disequilibrium with causal variants. We discuss the implications of these results for genomic prediction in other organisms.
Published Version: doi:10.1371/journal.pgen.1002685
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3342952/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:11210604
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters