Use of high-density tiling microarrays to identify mutations globally and elucidate mechanisms of drug resistance in Plasmodium falciparum

View/ Open
Author
Dharia, Neekesh V
Cassera, María Belén
Westenberger, Scott J
Bopp, Selina ER
Eastman, Rich T
Plouffe, David
Batalov, Serge
Zhou, Yingyao
Fidock, David A
Winzeler, Elizabeth A
Volkman, Sarah K.
Note: Order does not necessarily reflect citation order of authors.
Published Version
https://doi.org/10.1186/gb-2009-10-2-r21Metadata
Show full item recordCitation
Dharia, Neekesh V., Amar Bir Singh Sidhu, María Belén Cassera, Scott J. Westenberger, Selina E. R. Bopp, Rich T. Eastman, David Plouffe, et al. 2009. Use of high-density tiling microarrays to identify mutations globally and elucidate mechanisms of drug resistance in Plasmodium falciparum. Genome Biology 10(2): R21.Abstract
Background: The identification of genetic changes that confer drug resistance or other phenotypic changes inpathogens can help optimize treatment strategies, support the development of new therapeutic agents, and
provide information about the likely function of genes. Elucidating mechanisms of phenotypic drug resistance can
also assist in identifying the mode of action of uncharacterized but potent antimalarial compounds identified in
high-throughput chemical screening campaigns against Plasmodium falciparum.
Results: Here we show that tiling microarrays can detect de novo a large proportion of the genetic changes that
differentiate one genome from another. We show that we detect most single nucleotide polymorphisms or small
insertion deletion events and all known copy number variations that distinguish three laboratory isolates using
readily accessible methods. We used the approach to discover mutations that occur during the selection process
after transfection. We also elucidated a mechanism by which parasites acquire resistance to the antimalarial
fosmidomycin, which targets the parasite isoprenoid synthesis pathway. Our microarray-based approach allowed
us to attribute in vitro derived fosmidomycin resistance to a copy number variation event in the pfdxr gene, which
enables the parasite to overcome fosmidomycin-mediated inhibition of isoprenoid biosynthesis.
Conclusions: We show that newly emerged single nucleotide polymorphisms can readily be detected and that
malaria parasites can rapidly acquire gene amplifications in response to in vitro drug pressure. The ability to define
comprehensively genetic variability in P. falciparum with a single overnight hybridization creates new opportunities
to study parasite evolution and improve the treatment and control of malaria.
Other Sources
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2688282/pdf/Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11213316
Collections
- SPH Scholarly Articles [6209]
Contact administrator regarding this item (to report mistakes or request changes)
Comments made during the workflow steps
FLAG8 HSPH