Show simple item record

dc.contributor.authorPapa, Riccardo
dc.contributor.authorMorrison, Clayton M
dc.contributor.authorWalters, James R
dc.contributor.authorCounterman, Brian A
dc.contributor.authorChen, Rui
dc.contributor.authorHalder, Georg
dc.contributor.authorFerguson, Laura
dc.contributor.authorffrench-Constant, Richard
dc.contributor.authorKapan, Durrell D
dc.contributor.authorJiggins, Chris D
dc.contributor.authorChamberlain, Nicola L
dc.contributor.authorReed, Robert D.
dc.contributor.authorMcMillan, William O.
dc.date.accessioned2013-10-25T12:16:24Z
dc.date.issued2008
dc.identifier.citationPapa, Riccardo, Clayton M. Morrison, James R. Walters, Brian A. Counterman, Rui Chen, Georg Halder, Laura Ferguson, et al. 2008. Highly conserved gene order and numerous novel repetitive elements in genomic regions linked to wing pattern variation in Heliconius butterflies. BMC Genomics 9: 345.en_US
dc.identifier.issn1471-2164en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:11213320
dc.description.abstractBackground: With over 20 parapatric races differing in their warningly colored wing patterns, the butterfly Heliconius erato provides a fascinating example of an adaptive radiation. Together with matching races of its co-mimic Heliconius melpomene, H. erato also represents a textbook case of Müllerian mimicry, a phenomenon where common warning signals are shared amongst noxious organisms. It is of great interest to identify the specific genes that control the mimetic wing patterns of H. erato and H. melpomene. To this end we have undertaken comparative mapping and targeted genomic sequencing in both species. This paper reports on a comparative analysis of genomic sequences linked to color pattern mimicry genes in Heliconius. Results: Scoring AFLP polymorphisms in H. erato broods allowed us to survey loci at approximately 362 kb intervals across the genome. With this strategy we were able to identify markers tightly linked to two color pattern genes: D and Cr, which were then used to screen H. erato BAC libraries in order to identify clones for sequencing. Gene density across 600 kb of BAC sequences appeared relatively low, although the number of predicted open reading frames was typical for an insect. We focused analyses on the D- and Cr-linked H. erato BAC sequences and on the Yb-linked H. melpomene BAC sequence. A comparative analysis between homologous regions of H. erato (Cr-linked BAC) and H. melpomene (Yb-linked BAC) revealed high levels of sequence conservation and microsynteny between the two species. We found that repeated elements constitute 26% and 20% of BAC sequences from H. erato and H. melpomene respectively. The majority of these repetitive sequences appear to be novel, as they showed no significant similarity to any other available insect sequences. We also observed signs of fine scale conservation of gene order between Heliconius and the moth Bombyx mori, suggesting that lepidopteran genome architecture may be conserved over very long evolutionary time scales. Conclusion: Here we have demonstrated the tractability of progressing from a genetic linkage map to genomic sequence data in Heliconius butterflies. We have also shown that fine-scale gene order is highly conserved between distantly related Heliconius species, and also between Heliconius and B. mori. Together, these findings suggest that genome structure in macrolepidoptera might be very conserved, and show that mapping and positional cloning efforts in different lepidopteran species can be reciprocally informative.en_US
dc.description.sponsorshipOther Research Uniten_US
dc.language.isoen_USen_US
dc.publisherBioMed Centralen_US
dc.relation.isversionofdoi:10.1186/1471-2164-9-345en_US
dc.relation.hasversionhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC2515155/pdf/en_US
dash.licenseLAA
dc.titleHighly conserved gene order and numerous novel repetitive elements in genomic regions linked to wing pattern variation in Heliconius butterfliesen_US
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden_US
dc.relation.journalBMC Genomicsen_US
dash.depositing.authorChamberlain, Nicola L
dc.date.available2013-10-25T12:16:24Z
dash.affiliation.otherFAS^FCOR^FAS Center for Systems Biology - Othen_US
dc.identifier.doi10.1186/1471-2164-9-345*
dash.authorsorderedfalse
dash.contributor.affiliatedChamberlain, Nicola


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record