Inhibition of Bacterial Conjugation by Phage M13 and Its Protein g3p: Quantitative Analysis and Model

DSpace/Manakin Repository

Inhibition of Bacterial Conjugation by Phage M13 and Its Protein g3p: Quantitative Analysis and Model

Citable link to this page

 

 
Title: Inhibition of Bacterial Conjugation by Phage M13 and Its Protein g3p: Quantitative Analysis and Model
Author: Lin, Abraham; Derr, Julien; Villanueva, Laura; Webber, Mark Alexander; Jimenez, Jose Ignacio; Vera, Pedro; Manapat, Michael; Esvelt, Kevin Michael; Liu, David Ruchien; Chen, Irene Ann

Note: Order does not necessarily reflect citation order of authors.

Citation: Lin, Abraham, Jose Jimenez, Julien Derr, Pedro Vera, Michael L. Manapat, Kevin M. Esvelt, Laura Villanueva, David R. Liu, and Irene A. Chen. 2011. Inhibition of Bacterial Conjugation by Phage M13 and Its Protein g3p: Quantitative Analysis and Model. PLoS ONE 6(5): e19991.
Full Text & Related Files:
Abstract: Conjugation is the main mode of horizontal gene transfer that spreads antibiotic resistance among bacteria. Strategies for inhibiting conjugation may be useful for preserving the effectiveness of antibiotics and preventing the emergence of bacterial strains with multiple resistances. Filamentous bacteriophages were first observed to inhibit conjugation several decades ago. Here we investigate the mechanism of inhibition and find that the primary effect on conjugation is occlusion of the conjugative pilus by phage particles. This interaction is mediated primarily by phage coat protein g3p, and exogenous addition of the soluble fragment of g3p inhibited conjugation at low nanomolar concentrations. Our data are quantitatively consistent with a simple model in which association between the pili and phage particles or g3p prevents transmission of an F plasmid encoding tetracycline resistance. We also observe a decrease in the donor ability of infected cells, which is quantitatively consistent with a reduction in pili elaboration. Since many antibiotic-resistance factors confer susceptibility to phage infection through expression of conjugative pili (the receptor for filamentous phage), these results suggest that phage may be a source of soluble proteins that slow the spread of antibiotic resistance genes.
Published Version: doi://10.1371/journal.pone.0019991
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3102678/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:11213359
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters