Reduction of the Cholesterol Sensor SCAP in the Brains of Mice Causes Impaired Synaptic Transmission and Altered Cognitive Function

DSpace/Manakin Repository

Reduction of the Cholesterol Sensor SCAP in the Brains of Mice Causes Impaired Synaptic Transmission and Altered Cognitive Function

Citable link to this page

 

 
Title: Reduction of the Cholesterol Sensor SCAP in the Brains of Mice Causes Impaired Synaptic Transmission and Altered Cognitive Function
Author: Suzuki, Ryo; Ferris, Heather; Chee, Melissa; Maratos-Flier, Eleftheria; Kahn, C. Ronald

Note: Order does not necessarily reflect citation order of authors.

Citation: Suzuki, Ryo, Heather A. Ferris, Melissa J. Chee, Eleftheria Maratos-Flier, and C. Ronald Kahn. 2013. Reduction of the cholesterol sensor SCAP in the brains of mice causes impaired synaptic transmission and altered cognitive function. PLoS Biology 11(4): e1001532.
Full Text & Related Files:
Abstract: The sterol sensor SCAP is a key regulator of SREBP-2, the major transcription factor controlling cholesterol synthesis. Recently, we showed that there is a global down-regulation of cholesterol synthetic genes, as well as SREBP-2, in the brains of diabetic mice, leading to a reduction of cholesterol synthesis. We now show that in mouse models of type 1 and type 2 diabetes, this is, in part, the result of a decrease of SCAP. Homozygous disruption of the Scap gene in the brains of mice causes perinatal lethality associated with microcephaly and gliosis. Mice with haploinsufficiency of Scap in the brain show a 60% reduction of SCAP protein and ~30% reduction in brain cholesterol synthesis, similar to what is observed in diabetic mice. This results in impaired synaptic transmission, as measured by decreased paired pulse facilitation and long-term potentiation, and is associated with behavioral and cognitive changes. Thus, reduction of SCAP and the consequent suppression of cholesterol synthesis in the brain may play an important role in the increased rates of cognitive decline and Alzheimer disease observed in diabetic states.
Published Version: doi:10.1371/journal.pbio.1001532
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3621654/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:11215268
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters