Gaussian Process Kernels for Pattern Discovery and Extrapolation
Metadata
Show full item recordCitation
Andrew Gordon Wilson; Ryan Prescott Adams. 2013. Gaussian process kernels for pattern discovery and extrapolation. Journal of Machine Learning Research 28, no. 3: 1067-1075.Abstract
Gaussian processes are rich distributions over functions, which provide a Bayesian nonparametric approach to smoothing and interpolation. We introduce simple closed form kernels that can be used with Gaussian processes to discover patterns and enable extrapolation. These kernels are derived by modeling a spectral density – the Fourier transform of a kernel – with a Gaussian mixture. The proposed kernels support a broad class of stationary covariances, but Gaussian process inference remains simple and analytic. We demonstrate the proposed kernels by discovering patterns and performing long range extrapolation on synthetic examples, as well as atmospheric CO2 trends and airline passenger data. We also show that it is possible to reconstruct several popular standard covariances within our framework.Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAPCitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11337457
Collections
- FAS Scholarly Articles [17845]
Contact administrator regarding this item (to report mistakes or request changes)