Heparan Sulfate Regrowth Profiles Under Laminar Shear Flow Following Enzymatic Degradation

DSpace/Manakin Repository

Heparan Sulfate Regrowth Profiles Under Laminar Shear Flow Following Enzymatic Degradation

Citable link to this page

 

 
Title: Heparan Sulfate Regrowth Profiles Under Laminar Shear Flow Following Enzymatic Degradation
Author: Giantsos-Adams, Kristina M.; Koo, Andrew Jia-An; Song, Sukhyun; Sakai, Jiro; Sankaran, Jagadish; Shin, Jennifer H.; Garcia-Cardena, Guillermo; Dewey, C. Forbes

Note: Order does not necessarily reflect citation order of authors.

Citation: Giantsos-Adams, Kristina M., Andrew Jia-An Koo, Sukhyun Song, Jiro Sakai, Jagadish Sankaran, Jennifer H. Shin, Guillermo Garcia-Cardena, and C. Forbes Dewey. 2013. “Heparan Sulfate Regrowth Profiles Under Laminar Shear Flow Following Enzymatic Degradation.” Cellular and Molecular Bioengineering 6 (2): 160-174. doi:10.1007/s12195-013-0273-z. http://dx.doi.org/10.1007/s12195-013-0273-z.
Full Text & Related Files:
Abstract: The local hemodynamic shear stress waveforms present in an artery dictate the endothelial cell phenotype. The observed decrease of the apical glycocalyx layer on the endothelium in atheroprone regions of the circulation suggests that the glycocalyx may have a central role in determining atherosclerotic plaque formation. However, the kinetics for the cells’ ability to adapt its glycocalyx to the environment have not been quantitatively resolved. Here we report that the heparan sulfate component of the glycocalyx of HUVECs increases by 1.4-fold following the onset of high shear stress, compared to static cultured cells, with a time constant of 19 h. Cell morphology experiments show that 12 h are required for the cells to elongate, but only after 36 h have the cells reached maximal alignment to the flow vector. Our findings demonstrate that following enzymatic degradation, heparan sulfate is restored to the cell surface within 12 h under flow whereas the time required is 20 h under static conditions. We also propose a model describing the contribution of endocytosis and exocytosis to apical heparan sulfate expression. The change in HS regrowth kinetics from static to high-shear EC phenotype implies a differential in the rate of endocytic and exocytic membrane turnover.
Published Version: doi:10.1007/s12195-013-0273-z
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689914/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:11708625
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters