• Login
View Item 
  • DASH Home
  • Faculty of Arts and Sciences
  • FAS Scholarly Articles
  • View Item
  • DASH Home
  • Faculty of Arts and Sciences
  • FAS Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of DASH
  • Communities & Collections
  • By Issue Date
  • Author
  • Title
  • Keyword
  • FAS Department
This Collection
  • By Issue Date
  • Author
  • Title
  • Keyword
  • FAS Department

Submitters

  • Login
  • Quick submit
  • Waiver Generator

About

  • About DASH
  • DASH Stories
  • DASH FAQs
  • Accessibility
  • COVID-related Research
  • Terms of Use
  • Privacy Policy

Statistics

  • By Schools
  • By Collections
  • By Departments
  • By Items
  • By Country
  • By Authors

Restriction of intestinal stem cell expansion and the regenerative response by YAP

 
Thumbnail
View/Open
3536889.pdf (2.872Mb)
Author
Barry, Evan R.
Morikawa, Teppei
Butler, Brian L.
Shrestha, Kriti
de la Rosa, Rosemarie
Yan, Kelley S.
Fuchs, Charles S.HARVARD
Magness, Scott T.
Smits, Ron
Ogino, ShujiHARVARD
Kuo, Calvin J.
Camargo, Fernando D.HARVARD
Note: Order does not necessarily reflect citation order of authors.
Published Version
https://doi.org/10.1038/nature11693
Metadata
Show full item record
Citation
Barry, E. R., T. Morikawa, B. L. Butler, K. Shrestha, R. de la Rosa, K. S. Yan, C. S. Fuchs, et al. 2012. “Restriction of intestinal stem cell expansion and the regenerative response by YAP.” Nature 493 (7430): 106-110. doi:10.1038/nature11693. http://dx.doi.org/10.1038/nature11693.
Abstract
A remarkable feature of regenerative processes is their ability to halt proliferation once an organ’s structure has been restored. The Wnt signaling pathway is the major driving force for homeostatic self-renewal and regeneration in the mammalian intestine. The mechanisms that counterbalance Wnt-driven proliferation are poorly understood. We demonstrate here that YAP, a protein known for its powerful growth-inducing and oncogenic properties1-2, has an unexpected growth-suppressive function restricting Wnt signals during intestinal regeneration. Transgenic expression of YAP reduces Wnt target gene expression and results in the rapid loss of intestinal crypts. In addition, loss of YAP results in Wnt hypersensitivity during regeneration, leading to hyperplasia, expansion of intestinal stem cells (ISCs) and niche cells, and formation of ectopic crypts and microadenomas. We find that cytoplasmic YAP restricts elevated Wnt signaling independently of the APC/Axin/GSK3β complex partly by limiting the activity of Dishevelled (DVL). DVL signals in the nucleus of ISCs and its forced expression leads to enhanced Wnt signaling in crypts. YAP dampens Wnt signals by restricting DVL nuclear translocation during regenerative growth. Finally, we provide evidence that YAP is silenced in a subset of highly aggressive and undifferentiated human colorectal carcinomas (CRC) and its expression can restrict the growth of CRC xenografts. Collectively, our work describes a novel mechanistic paradigm for how proliferative signals are counterbalanced in regenerating tissues. Additionally, our findings have important implications for the targeting of YAP in human malignancies.
Other Sources
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536889/pdf/
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11717550

Collections
  • FAS Scholarly Articles [17828]
  • HMS Scholarly Articles [18278]
  • SPH Scholarly Articles [6399]

Contact administrator regarding this item (to report mistakes or request changes)

e: osc@harvard.edu

t: +1 (617) 495 4089

Creative Commons license‌Creative Commons Attribution 4.0 International License

Except where otherwise noted, this work is subject to a Creative Commons Attribution 4.0 International License, which allows anyone to share and adapt our material as long as proper attribution is given. For details and exceptions, see the Harvard Library Copyright Policy ©2022 Presidents and Fellows of Harvard College.

  • Follow us on Twitter
  • Contact
  • Harvard Library
  • Harvard University