Cooperation and the Fate of Microbial Societies

DSpace/Manakin Repository

Cooperation and the Fate of Microbial Societies

Citable link to this page

 

 
Title: Cooperation and the Fate of Microbial Societies
Author: Allen, Benjamin Isaac; Nowak, Martin A.

Note: Order does not necessarily reflect citation order of authors.

Citation: Allen, Benjamin, and Martin A. Nowak. 2013. Cooperation and the fate of microbial societies. PLoS Biology 11(4): e1001549.
Full Text & Related Files:
Abstract: Microorganisms have been cooperating with each other for billions of years: by sharing resources, communicating with each other, and joining together to form biofilms and other large structures. These cooperative behaviors benefit the colony as a whole; however, they may be costly to the individuals performing them. This raises the question of how such cooperation can arise from natural selection. Mathematical modeling is one important avenue for exploring this question. Evolutionary experiments are another, providing us with an opportunity to see evolutionary dynamics in action and allowing us to test predictions arising from mathematical models. A new study in this issue of PLOS Biology investigates the evolution of a cooperative resource-sharing behavior in yeast. Examining the competition between cooperating and “cheating” strains of yeast, the authors find that, depending on the initial mix of strains, this yeast society either evolves toward a stable coexistence or collapses for lack of cooperation. Using a simple mathematical model, they show how these dynamics arise from eco-evolutionary feedback, where changes in the frequencies of strains are coupled with changes in population size. This study and others illustrate the combined power of modeling and experiment to elucidate the origins of cooperation and other fundamental questions in evolutionary biology.
Published Version: doi:10.1371/journal.pbio.1001549
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3640085/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:11743701
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters