Getting the biggest birch for the bang: restoring and expanding upland birchwoods in the Scottish Highlands by managing red deer

View/ Open
Author
Tanentzap, Andrew J
Zou, James
Coomes, David A
Published Version
https://doi.org/10.1002/ece3.548Metadata
Show full item recordCitation
Tanentzap, Andrew J, James Zou, and David A Coomes. 2013. “Getting the biggest birch for the bang: restoring and expanding upland birchwoods in the Scottish Highlands by managing red deer.” Ecology and Evolution 3 (7): 1890-1901. doi:10.1002/ece3.548. http://dx.doi.org/10.1002/ece3.548.Abstract
High deer populations threaten the conservation value of woodlands and grasslands, but predicting the success of deer culling, in terms of allowing vegetation to recover, is difficult. Numerical simulation modeling is one approach to gain insight into the outcomes of management scenarios. We develop a spatially explicit model to predict the responses of Betula spp. to red deer (Cervus elaphus) and land management in the Scottish Highlands. Our model integrates a Bayesian stochastic stage-based matrix model within the framework of a widely used individual-based forest simulation model, using data collected along spatial and temporal gradients in deer browsing. By initializing our model with the historical spatial locations of trees, we find that densities of juvenile trees (<3 m tall) predicted after 9–13 years closely match counts observed in the field. This is among the first tests of the accuracy of a dynamical simulation model for predicting the responses of tree regeneration to herbivores. We then test the relative importance of deer browsing, ground cover vegetation, and seed availability in facilitating landscape-level birch regeneration using simulations in which we varied these three variables. We find that deer primarily control transitions of birch to taller (>3 m) height tiers over 30 years, but regeneration also requires suitable ground cover for seedling establishment. Densities of adult seed sources did not influence regeneration, nor did an active management scenario where we altered the spatial configuration of adults by creating “woodland islets”. Our results show that managers interested in maximizing tree regeneration cannot simply reduce deer densities but must also improve ground cover for seedling establishment, and the model we develop now enables managers to quantify explicitly how much both these factors need to be altered. More broadly, our findings emphasize the need for land managers to consider the impacts of large herbivores rather than their densities.Other Sources
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728932/pdf/Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11855782
Collections
- FAS Scholarly Articles [17828]
Contact administrator regarding this item (to report mistakes or request changes)