Show simple item record

dc.contributor.authorIacono, Maria Idaen_US
dc.contributor.authorMakris, Nikosen_US
dc.contributor.authorMainardi, Lucaen_US
dc.contributor.authorAngelone, Leonardo M.en_US
dc.contributor.authorBonmassar, Giorgioen_US
dc.date.accessioned2014-03-01T02:25:31Z
dc.date.issued2013en_US
dc.identifier.citationIacono, Maria Ida, Nikos Makris, Luca Mainardi, Leonardo M. Angelone, and Giorgio Bonmassar. 2013. “MRI-Based Multiscale Model for Electromagnetic Analysis in the Human Head with Implanted DBS.” Computational and Mathematical Methods in Medicine 2013 (1): 694171. doi:10.1155/2013/694171. http://dx.doi.org/10.1155/2013/694171.en
dc.identifier.issn1748-670Xen
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:11855908
dc.description.abstractDeep brain stimulation (DBS) is an established procedure for the treatment of movement and affective disorders. Patients with DBS may benefit from magnetic resonance imaging (MRI) to evaluate injuries or comorbidities. However, the MRI radio-frequency (RF) energy may cause excessive tissue heating particularly near the electrode. This paper studies how the accuracy of numerical modeling of the RF field inside a DBS patient varies with spatial resolution and corresponding anatomical detail of the volume surrounding the electrodes. A multiscale model (MS) was created by an atlas-based segmentation using a 1 mm3 head model (mRes) refined in the basal ganglia by a 200 μm2 ex-vivo dataset. Four DBS electrodes targeting the left globus pallidus internus were modeled. Electromagnetic simulations at 128 MHz showed that the peak of the electric field of the MS doubled (18.7 kV/m versus 9.33 kV/m) and shifted 6.4 mm compared to the mRes model. Additionally, the MS had a sixfold increase over the mRes model in peak-specific absorption rate (SAR of 43.9 kW/kg versus 7 kW/kg). The results suggest that submillimetric resolution and improved anatomical detail in the model may increase the accuracy of computed electric field and local SAR around the tip of the implant.en
dc.language.isoen_USen
dc.publisherHindawi Publishing Corporationen
dc.relation.isversionofdoi:10.1155/2013/694171en
dc.relation.hasversionhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3727211/pdf/en
dash.licenseLAAen_US
dc.titleMRI-Based Multiscale Model for Electromagnetic Analysis in the Human Head with Implanted DBSen
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden
dc.relation.journalComputational and Mathematical Methods in Medicineen
dash.depositing.authorAngelone, Leonardo M.en_US
dc.date.available2014-03-01T02:25:31Z
dc.identifier.doi10.1155/2013/694171*
dash.contributor.affiliatedAngelone, Leonardo M.
dash.contributor.affiliatedBonmassar, Giorgio


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record