Vesicular sorting controls the polarity of expanding membranes in the C. elegans intestine

DSpace/Manakin Repository

Vesicular sorting controls the polarity of expanding membranes in the C. elegans intestine

Citable link to this page

 

 
Title: Vesicular sorting controls the polarity of expanding membranes in the C. elegans intestine
Author: Zhang, Hongjie; Kim, Ahlee; Abraham, Nessy; Khan, Liakot A.; Göbel, Verena

Note: Order does not necessarily reflect citation order of authors.

Citation: Zhang, Hongjie, Ahlee Kim, Nessy Abraham, Liakot A. Khan, and Verena Göbel. 2013. “Vesicular sorting controls the polarity of expanding membranes in the C. elegans intestine.” Worm 2 (1): e23702. doi:10.4161/worm.23702. http://dx.doi.org/10.4161/worm.23702.
Full Text & Related Files:
Abstract: Biological tubes consist of polarized epithelial cells with apical membranes building the central lumen and basolateral membranes contacting adjacent cells or the extracellular matrix. Cellular polarity requires distinct inputs from outside the cell, e.g., the matrix, inside the cell, e.g., vesicular trafficking and the plasma membrane and its junctions.1 Many highly conserved polarity cues have been identified, but their integration during the complex process of polarized tissue and organ morphogenesis is not well understood. It is assumed that plasma-membrane-associated polarity determinants, such as the partitioning-defective (PAR) complex, define plasma membrane domain identities, whereas vesicular trafficking delivers membrane components to these domains, but lacks the ability to define them. In vitro studies on lumenal membrane biogenesis in mammalian cell lines now indicate that trafficking could contribute to defining membrane domains by targeting the polarity determinants, e.g., the PARs, themselves.2 This possibility suggests a mechanism for PARs’ asymmetric distribution on membranes and places vesicle-associated polarity cues upstream of membrane-associated polarity determinants. In such an upstream position, trafficking might even direct multiple membrane components, not only polarity determinants, an original concept of polarized plasma membrane biogenesis3,4that was largely abandoned due to the failure to identify a molecularly defined intrinsic vesicular sorting mechanism. Our two recent studies on C. elegans intestinal tubulogenesis reveal that glycosphingolipids (GSLs) and the well-recognized vesicle components clathrin and its AP-1 adaptor are required for targeting multiple apical molecules, including polarity regulators, to the expanding apical/lumenal membrane.5,6 These findings support GSLs’ long-proposed role in in vivo polarized epithelial membrane biogenesis and development and identify a novel function in apical polarity for classical post-Golgi vesicle components. They are also compatible with a vesicle-intrinsic sorting mechanism during membrane biogenesis and suggest a model for how vesicles could acquire apical directionality during the assembly of the functionally critical polarized lumenal surfaces of epithelial tubes.
Published Version: doi:10.4161/worm.23702
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670463/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:11877094
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters