Whole transcriptome sequencing identifies tumor-specific mutations in human oral squamous cell carcinoma

View/ Open
Author
Zhang, Qu
Zhang, Jun
Jin, Hong
Sheng, Sitong
Note: Order does not necessarily reflect citation order of authors.
Published Version
https://doi.org/10.1186/1755-8794-6-28Metadata
Show full item recordCitation
Zhang, Qu, Jun Zhang, Hong Jin, and Sitong Sheng. 2013. “Whole transcriptome sequencing identifies tumor-specific mutations in human oral squamous cell carcinoma.” BMC Medical Genomics 6 (1): 28. doi:10.1186/1755-8794-6-28. http://dx.doi.org/10.1186/1755-8794-6-28.Abstract
Background: The accumulation of somatic mutations in genes and molecular pathways is a major factor in the evolution of oral squamous cell carcinoma (OSCC), which sparks studies to identify somatic mutations with clinical potentials. Recently, massively parallel sequencing technique has started to revolutionize biomedical studies, due to the rapid increase in its throughput and drop in cost. Hence sequencing of whole transcriptome (RNA-Seq) becomes a superior approach in cancer studies, which enables the detection of somatic mutations and accurate measurement of gene expression simultaneously. Methods: We used RNA-Seq data from tumor and matched normal samples to investigate somatic mutation spectrum in OSCC. Results: By applying a sophisticated bioinformatic pipeline, we interrogated two tumor samples and their matched normal tissues and identified 70,472 tumor somatic mutations in protein-coding regions. We further identified 515 significantly mutated genes (SMGs) and 156 tumor-specific disruptive genes (TDGs), with six genes in both sets, including ANKRA2, GTF2H5, STOML1, NUP37, PPP1R26, and TAF1L. Pathway analysis suggested that SMGs were enriched in cell adhesion pathways, which are frequently indicated in tumor development. We also found that SMGs tend to be differentially expressed between tumors and normal tissues, implying a regulatory role of accumulation of genetic aberrations in these genes. Conclusions: Our finding of known tumor genes proves of the utility of RNA-Seq in mutation screening, and functional analysis of genes detected here would help understand the molecular mechanism of OSCC.Other Sources
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3844419/pdf/Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11879295
Collections
- FAS Scholarly Articles [18172]
Contact administrator regarding this item (to report mistakes or request changes)