Pervasive Genetic Hitchhiking and Clonal Interference in 40 Evolving Yeast Populations

View/ Open
Author
Lang, Gregory I.
Hickman, Mark J.
Sodergren, Erica
Weinstock, George M.
Botstein, David
Published Version
https://doi.org/10.1038/nature12344Metadata
Show full item recordCitation
Lang, Gregory I., Daniel P. Rice, Mark J. Hickman, Erica Sodergren, George M. Weinstock, David Botstein, and Michael M. Desai. 2013. “Pervasive Genetic Hitchhiking and Clonal Interference in 40 Evolving Yeast Populations.” Nature 500 (7464): 571-574. doi:10.1038/nature12344. http://dx.doi.org/10.1038/nature12344.Abstract
The dynamics of adaptation determines which mutations fix in a population, and hence how reproducible evolution will be. This is central to understanding the spectra of mutations recovered in evolution of antibiotic resistance1, the response of pathogens to immune selection2,3, and the dynamics of cancer progression4,5. In laboratory evolution experiments, demonstrably beneficial mutations are found repeatedly6–8, but are often accompanied by other mutations with no obvious benefit. Here we use whole-genome whole-population sequencing to examine the dynamics of genome sequence evolution at high temporal resolution in 40 replicate Saccharomyces cerevisiae populations growing in rich medium for 1,000 generations. We find pervasive genetic hitchhiking: multiple mutations arise and move synchronously through the population as mutational “cohorts.” Multiple clonal cohorts are often present simultaneously, competing with each other in the same population. Our results show that patterns of sequence evolution are driven by a balance between these chance effects of hitchhiking and interference, which increase stochastic variation in evolutionary outcomes, and the deterministic action of selection on individual mutations, which favors parallel evolutionary solutions in replicate populations.Other Sources
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758440/pdf/Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11879818
Collections
- FAS Scholarly Articles [18145]
Contact administrator regarding this item (to report mistakes or request changes)