Payment Rules through Discriminant-Based Classifiers

DSpace/Manakin Repository

Payment Rules through Discriminant-Based Classifiers

Citable link to this page

 

 
Title: Payment Rules through Discriminant-Based Classifiers
Author: Dütting, Paul; Fischer, Felix; Jirapinyo, Pichayut; Lai, John Kwang; Lubin, Benjamin; Parkes, David C.

Note: Order does not necessarily reflect citation order of authors.

Citation: Dütting, Paul, Felix Fischer, Pichayut Jirapinyo, John K. Lai, Benjamin Lubin, and David C. Parkes. 2012. Payment rules through discriminant-based classifiers. Proceedings of the 13th ACM Conference on Electronic Commerce (EC ’12), June 4-8, 2012, Valencia, Spain, 477-494. New York, NY: ACM Press.
Full Text & Related Files:
Abstract: In mechanism design it is typical to impose incentive compatibility and then derive an optimal mechanism subject to this constraint. By replacing the incentive compatibility requirement with the goal of minimizing expected ex post regret, we are able to adapt statistical machine learning techniques to the design of payment rules. This computational approach to mechanism design is applicable to domains with multi-dimensional types and situations where computational efficiency is a concern. Specifically, given an outcome rule and access to a type distribution, we train a support vector machine with a special discriminant function structure such that it implicitly establishes a payment rule with desirable incentive properties. We discuss applications to a multi-minded combinatorial auction with a greedy winner-determination algorithm and to an assignment problem with egalitarian outcome rule. Experimental results demonstrate both that the construction produces payment rules with low ex post regret, and that penalizing classification errors is effective in preventing failures of ex post individual rationality.
Published Version: doi:10.1145/2229012.2229048
Terms of Use: This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:11956914
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters