Discovery of a Potent and Selective DDR1 Receptor Tyrosine Kinase Inhibitor

View/ Open
Author
Kim, Hyung-Gu
Liu, Feiyang
Canning, Peter
Choi, Hwan Geun
Ezell, Scott A.
Wu, Hong
Zhao, Zheng
Griffin, James
D.
Bullock, Alex N.
Liu, Qingsong
Note: Order does not necessarily reflect citation order of authors.
Published Version
https://doi.org/10.1021/cb400430tMetadata
Show full item recordCitation
Kim, H., L. Tan, E. L. Weisberg, F. Liu, P. Canning, H. G. Choi, S. A. Ezell, et al. 2013. “Discovery of a Potent and Selective DDR1 Receptor Tyrosine Kinase Inhibitor.” ACS Chemical Biology 8 (10): 2145-2150. doi:10.1021/cb400430t. http://dx.doi.org/10.1021/cb400430t.Abstract
The DDR1 receptor tyrosine kinase is activated by matrix collagens and has been implicated in numerous cellular functions such as proliferation, differentiation, adhesion, migration, and invasion. Here we report the discovery of a potent and selective DDR1 inhibitor, DDR1-IN-1, and present the 2.2 Å DDR1 co-crystal structure. DDR1-IN-1 binds to DDR1 in the ‘DFG-out’ conformation and inhibits DDR1 autophosphorylation in cells at submicromolar concentrations with good selectivity as assessed against a panel of 451 kinases measured using the KinomeScan technology. We identified a mutation in the hinge region of DDR1, G707A, that confers >20-fold resistance to the ability of DDR1-IN-1 to inhibit DDR1 autophosphorylation and can be used to establish what pharmacology is DDR1-dependent. A combinatorial screen of DDR1-IN-1 with a library of annotated kinase inhibitors revealed that inhibitors of PI3K and mTOR such as GSK2126458 potentiate the antiproliferative activity of DDR1-IN-1 in colorectal cancer cell lines. DDR1-IN-1 provides a useful pharmacological probe for DDR1-dependent signal transduction.Other Sources
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3800496/pdf/Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:12152819
Collections
- FAS Scholarly Articles [14543]
- HMS Scholarly Articles [15665]
Contact administrator regarding this item (to report mistakes or request changes)