An Insulin-to-Insulin Regulatory Network Orchestrates Phenotypic Specificity in Development and Physiology

DSpace/Manakin Repository

An Insulin-to-Insulin Regulatory Network Orchestrates Phenotypic Specificity in Development and Physiology

Citable link to this page

 

 
Title: An Insulin-to-Insulin Regulatory Network Orchestrates Phenotypic Specificity in Development and Physiology
Author: Fernandes de Abreu, Diana Andrea; Caballero, Antonio; Fardel, Pascal; Stroustrup, Nicholas; Chen, Zhunan; Lee, KyungHwa; Keyes, William D.; Nash, Zachary M.; López-Moyado, Isaac F.; Vaggi, Federico; Cornils, Astrid; Regenass, Martin; Neagu, Anca; Ostojic, Ivan; Liu, Chang; Cho, Yongmin; Sifoglu, Deniz; Shen, Yu; Fontana, Walter; Lu, Hang; Csikasz-Nagy, Attila; Murphy, Coleen T.; Antebi, Adam; Blanc, Eric; Apfeld, Javier; Zhang, Yun; Alcedo, Joy; Ch'ng, QueeLim

Note: Order does not necessarily reflect citation order of authors.

Citation: Fernandes de Abreu, D. A., A. Caballero, P. Fardel, N. Stroustrup, Z. Chen, K. Lee, W. D. Keyes, et al. 2014. “An Insulin-to-Insulin Regulatory Network Orchestrates Phenotypic Specificity in Development and Physiology.” PLoS Genetics 10 (3): e1004225. doi:10.1371/journal.pgen.1004225. http://dx.doi.org/10.1371/journal.pgen.1004225.
Full Text & Related Files:
Abstract: Insulin-like peptides (ILPs) play highly conserved roles in development and physiology. Most animal genomes encode multiple ILPs. Here we identify mechanisms for how the forty Caenorhabditis elegans ILPs coordinate diverse processes, including development, reproduction, longevity and several specific stress responses. Our systematic studies identify an ILP-based combinatorial code for these phenotypes characterized by substantial functional specificity and diversity rather than global redundancy. Notably, we show that ILPs regulate each other transcriptionally, uncovering an ILP-to-ILP regulatory network that underlies the combinatorial phenotypic coding by the ILP family. Extensive analyses of genetic interactions among ILPs reveal how their signals are integrated. A combined analysis of these functional and regulatory ILP interactions identifies local genetic circuits that act in parallel and interact by crosstalk, feedback and compensation. This organization provides emergent mechanisms for phenotypic specificity and graded regulation for the combinatorial phenotypic coding we observe. Our findings also provide insights into how large hormonal networks regulate diverse traits.
Published Version: doi:10.1371/journal.pgen.1004225
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3967928/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12152830
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters