Show simple item record

dc.contributor.advisorHarris, Joseph D.
dc.contributor.authorWoolf, Matthew Jacob
dc.date.accessioned2014-06-06T16:52:12Z
dc.date.issued2014-06-06
dc.date.submitted2014
dc.identifier.citationWoolf, Matthew Jacob. 2014. Relative Jacobians of Linear Systems. Doctoral dissertation, Harvard University.en_US
dc.identifier.otherhttp://dissertations.umi.com/gsas.harvard:11522en
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:12274184
dc.description.abstractLet X be a smooth projective variety. Given any basepoint-free linear system, |D|, there is a dense open subset parametrizing smooth divisors, and over that subset, we can consider the relative Picard variety of the universal divisor, which parametrizes pairs of a smooth divisor in the linear system and a line bundle on that divisor. In the case where X is a surface, there is a natural compactification of the relative Picard variety, given by taking the moduli space of pure one-dimensional Gieseker-semistable sheaves with respect to some polarization. In the case of the projective plane, this is an irreducible projective variety of Picard number 2. We study the nef and effective cones of these moduli spaces, and talk about the relation with variation of Bridgeland stability conditions.en_US
dc.description.sponsorshipMathematicsen_US
dc.language.isoen_USen_US
dash.licenseLAA
dc.subjectMathematicsen_US
dc.titleRelative Jacobians of Linear Systemsen_US
dc.typeThesis or Dissertationen_US
dash.depositing.authorWoolf, Matthew Jacob
dc.date.available2014-06-06T16:52:12Z
thesis.degree.date2014en_US
thesis.degree.disciplineMathematicsen_US
thesis.degree.grantorHarvard Universityen_US
thesis.degree.leveldoctoralen_US
thesis.degree.namePh.D.en_US
dc.contributor.committeeMemberGaitsgory, Dennisen_US
dc.contributor.committeeMemberChen, Daweien_US
dash.contributor.affiliatedWoolf, Matthew Jacob


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record