Symmetric Spaces and Knot Invariants from Gauge Theory
View/ Open
Daemi_gsas.harvard_0084L_11563.pdf (632.3Kb)
Access Status
Full text of the requested work is not available in DASH at this time ("restricted access"). For more information on restricted deposits, see our FAQ.Author
Metadata
Show full item recordCitation
Daemi, Aliakbar. 2014. Symmetric Spaces and Knot Invariants from Gauge Theory. Doctoral dissertation, Harvard University.Abstract
In this thesis, we set up a framework to define knot invariants for each choice of a symmetric space. In order to address this task, we start by defining appropriate notions of singular bundles and singular connections for a given symmetric space. We can associate a moduli space to any singular bundle defined over a compact 4-manifold with possibly non-empty boundary. We study these moduli spaces and show that they enjoy nice properties. For example, in the case of the symmetric space SU(n)/SO(n) the moduli space can be perturbed to an orientable manifold. Although this manifold is not necessarily compact, we introduce a comapctification of it. We then use this moduli space for singular bundles defined over 4-manifolds of the form YxR to define knot invariants. In another direction we mimic the construction of Donaldson invariants to define polynomial invariants for closed 4-manifolds equipped with smooth action of Z/2Z.Citable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274589
Collections
- FAS Theses and Dissertations [5848]
Contact administrator regarding this item (to report mistakes or request changes)