Show simple item record

dc.contributor.authorSrinivasan, Parthasarathyen_US
dc.contributor.authorZervantonakis, Ioannis K.en_US
dc.contributor.authorKothapalli, Chandrasekhar R.en_US
dc.date.accessioned2014-07-07T17:03:17Z
dc.date.issued2014en_US
dc.identifier.citationSrinivasan, Parthasarathy, Ioannis K. Zervantonakis, and Chandrasekhar R. Kothapalli. 2014. “Synergistic Effects of 3D ECM and Chemogradients on Neurite Outgrowth and Guidance: A Simple Modeling and Microfluidic Framework.” PLoS ONE 9 (6): e99640. doi:10.1371/journal.pone.0099640. http://dx.doi.org/10.1371/journal.pone.0099640.en
dc.identifier.issn1932-6203en
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:12406673
dc.description.abstractDuring nervous system development, numerous cues within the extracellular matrix microenvironment (ECM) guide the growing neurites along specific pathways to reach their intended targets. Neurite motility is controlled by extracellular signal sensing through the growth cone at the neurite tip, including chemoattractive and repulsive cues. However, it is difficult to regenerate and restore neurite tracts, lost or degraded due to an injury or disease, in the adult central nervous system. Thus, it is important to evaluate the dynamic interplay between ECM and the concentration gradients of these cues, which would elicit robust neuritogenesis. Such information is critical in understanding the processes involved in developmental biology, and in developing high-fidelity neurite regenerative strategies post-injury, and in drug discovery and targeted therapeutics for neurodegenerative conditions. Here, we quantitatively investigated this relationship using a combination of mathematical modeling and in vitro experiments, and determined the synergistic role of guidance cues and ECM on neurite outgrowth and turning. Using a biomimetic microfluidic system, we have shown that cortical neurite outgrowth and turning under chemogradients (IGF-1 or BDNF) within 3D scaffolds is highly regulated by the source concentration of the guidance cue and the physical characteristics of the scaffold. A mechanistic-driven partial differential equation model of neurite outgrowth has been proposed, which could also be used prospectively as a predictive tool. The parameters for the chemotaxis term in the model are determined from the experimental data using our microfluidic assay. Resulting model simulations demonstrate how neurite outgrowth was critically influenced by the experimental variables, which was further supported by experimental data on cell-surface-receptor expressions. The model results are in excellent agreement with the experimental findings. This integrated approach represents a framework for further elucidation of biological mechanisms underlying neuronal responses of specialized cell types, during various stages of development, and under healthy or diseased conditions.en
dc.language.isoen_USen
dc.publisherPublic Library of Scienceen
dc.relation.isversionofdoi:10.1371/journal.pone.0099640en
dc.relation.hasversionhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC4051856/pdf/en
dash.licenseLAAen_US
dc.subjectBiology and Life Sciencesen
dc.subjectBiophysicsen
dc.subjectBiotechnologyen
dc.subjectBioengineeringen
dc.subjectBiomedical Engineeringen
dc.subjectBiomimeticsen
dc.subjectBiomaterialsen
dc.subjectCell Biologyen
dc.subjectCellular Structures and Organellesen
dc.subjectExtracellular Matrixen
dc.subjectCell Motilityen
dc.subjectMolecular Cell Biologyen
dc.subjectNeuroscienceen
dc.subjectCellular Neuroscienceen
dc.subjectAxon Guidanceen
dc.subjectNeurogenesisen
dc.subjectDevelopmental Neuroscienceen
dc.subjectEngineering and Technologyen
dc.subjectMedicine and Health Sciencesen
dc.subjectNeurologyen
dc.subjectNeurobiology of Disease and Regenerationen
dc.subjectPhysical Sciencesen
dc.subjectMaterials Scienceen
dc.subjectMathematicsen
dc.subjectApplied Mathematicsen
dc.titleSynergistic Effects of 3D ECM and Chemogradients on Neurite Outgrowth and Guidance: A Simple Modeling and Microfluidic Frameworken
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden
dc.relation.journalPLoS ONEen
dash.depositing.authorZervantonakis, Ioannis K.en_US
dc.date.available2014-07-07T17:03:17Z
dc.identifier.doi10.1371/journal.pone.0099640*
dash.contributor.affiliatedZervantonakis, Ioannis


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record