Autonomous exoskeleton reduces metabolic cost of human walking during load carriage

DSpace/Manakin Repository

Autonomous exoskeleton reduces metabolic cost of human walking during load carriage

Citable link to this page

 

 
Title: Autonomous exoskeleton reduces metabolic cost of human walking during load carriage
Author: Mooney, Luke M; Rouse, Elliott J; Herr, Hugh M

Note: Order does not necessarily reflect citation order of authors.

Citation: Mooney, Luke M, Elliott J Rouse, and Hugh M Herr. 2014. “Autonomous exoskeleton reduces metabolic cost of human walking during load carriage.” Journal of NeuroEngineering and Rehabilitation 11 (1): 80. doi:10.1186/1743-0003-11-80. http://dx.doi.org/10.1186/1743-0003-11-80.
Full Text & Related Files:
Abstract: Background: Many soldiers are expected to carry heavy loads over extended distances, often resulting in physical and mental fatigue. In this study, the design and testing of an autonomous leg exoskeleton is presented. The aim of the device is to reduce the energetic cost of loaded walking. In addition, we present the Augmentation Factor, a general framework of exoskeletal performance that unifies our results with the varying abilities of previously developed exoskeletons. Methods: We developed an autonomous battery powered exoskeleton that is capable of providing substantial levels of positive mechanical power to the ankle during the push-off region of stance phase. We measured the metabolic energy consumption of seven subjects walking on a level treadmill at 1.5 m/s, while wearing a 23 kg vest. Results: During the push-off portion of the stance phase, the exoskeleton applied positive mechanical power with an average across the gait cycle equal to 23 ± 2 W (11.5 W per ankle). Use of the autonomous leg exoskeleton significantly reduced the metabolic cost of walking by 36 ± 12 W, which was an improvement of 8 ± 3% (p = 0.025) relative to the control condition of not wearing the exoskeleton. Conclusions: In the design of leg exoskeletons, the results of this study highlight the importance of minimizing exoskeletal power dissipation and added limb mass, while providing substantial positive power during the walking gait cycle.
Published Version: doi:10.1186/1743-0003-11-80
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4036406/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12406777
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters