Abnormal Brain Iron Metabolism in Irp2 Deficient Mice Is Associated with Mild Neurological and Behavioral Impairments

View/ Open
Author
Becker, Lore
Garrett, Lillian
Hölter, Sabine M.
Calzada-Wack, Julia
Mossbrugger, Ilona
Quintanilla-Fend, Leticia
Racz, Ildiko
Rathkolb, Birgit
Klopstock, Thomas
Wurst, Wolfgang
Zimmer, Andreas
Wolf, Eckhard
Fuchs, Helmut
Gailus-Durner, Valerie
de Angelis, Martin Hrabě
Romney, Steven J.
Leibold, Elizabeth A.
Note: Order does not necessarily reflect citation order of authors.
Published Version
https://doi.org/10.1371/journal.pone.0098072Metadata
Show full item recordCitation
Zumbrennen-Bullough, K. B., L. Becker, L. Garrett, S. M. Hölter, J. Calzada-Wack, I. Mossbrugger, L. Quintanilla-Fend, et al. 2014. “Abnormal Brain Iron Metabolism in Irp2 Deficient Mice Is Associated with Mild Neurological and Behavioral Impairments.” PLoS ONE 9 (6): e98072. doi:10.1371/journal.pone.0098072. http://dx.doi.org/10.1371/journal.pone.0098072.Abstract
Iron Regulatory Protein 2 (Irp2, Ireb2) is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2−/− mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc), expression are increased and decreased, respectively, in the brain from Irp2−/− mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments.Other Sources
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4045679/pdf/Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:12406813
Collections
- HMS Scholarly Articles [17842]
Contact administrator regarding this item (to report mistakes or request changes)