Show simple item record

dc.contributor.authorLandau, Dan Aen_US
dc.contributor.authorWu, Catherine Jen_US
dc.date.accessioned2014-07-07T18:14:17Z
dc.date.issued2013en_US
dc.identifier.citationLandau, Dan A., and Catherine J Wu. 2013. “Chronic lymphocytic leukemia: molecular heterogeneity revealed by high-throughput genomics.” Genome Medicine 5 (5): 47. doi:10.1186/gm451. http://dx.doi.org/10.1186/gm451.en
dc.identifier.issn1756-994Xen
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:12406931
dc.description.abstractChronic lymphocytic leukemia (CLL) has been consistently at the forefront of genetic research owing to its prevalence and the accessibility of sample material. Recently, genome-wide technologies have been intensively applied to CLL genetics, with remarkable progress. Single nucleotide polymorphism arrays have identified recurring chromosomal aberrations, thereby focusing functional studies on discrete genomic lesions and leading to the first implication of somatic microRNA disruption in cancer. Next-generation sequencing (NGS) has further transformed our understanding of CLL by identifying novel recurrently mutated putative drivers, including the unexpected discovery of somatic mutations affecting spliceosome function. NGS has further enabled in-depth examination of the transcriptional and epigenetic changes in CLL that accompany genetic lesions, and has shed light on how different driver events appear at different stages of disease progression and clonally evolve with relapsed disease. In addition to providing important insights into disease biology, these discoveries have significant translational potential. They enhance prognosis by highlighting specific lesions associated with poor clinical outcomes (for example, driver events such as mutations in the splicing factor subunit gene SF3B1) or with increased clonal heterogeneity (for example, the presence of subclonal driver mutations). Here, we review new genomic discoveries in CLL and discuss their possible implications in the era of precision medicine.en
dc.language.isoen_USen
dc.publisherBioMed Centralen
dc.relation.isversionofdoi:10.1186/gm451en
dc.relation.hasversionhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706960/pdf/en
dash.licenseLAAen_US
dc.titleChronic lymphocytic leukemia: molecular heterogeneity revealed by high-throughput genomicsen
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden
dc.relation.journalGenome Medicineen
dash.depositing.authorWu, Catherine Jen_US
dc.date.available2014-07-07T18:14:17Z
dc.identifier.doi10.1186/gm451*
dash.contributor.affiliatedWu, Catherine


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record