A computational approach to chemical etiologies of diabetes

DSpace/Manakin Repository

A computational approach to chemical etiologies of diabetes

Citable link to this page


Title: A computational approach to chemical etiologies of diabetes
Author: Audouze, Karine; Brunak, Søren; Grandjean, Philippe

Note: Order does not necessarily reflect citation order of authors.

Citation: Audouze, Karine, Søren Brunak, and Philippe Grandjean. 2013. “A Computational Approach to Chemical Etiologies of Diabetes.” Science Reports 3: 2712.
Full Text & Related Files:
Abstract: Computational meta-analysis can link environmental chemicals to genes and proteins involved in human diseases, thereby elucidating possible etiologies and pathogeneses of non-communicable diseases. We used an integrated computational systems biology approach to examine possible pathogenetic linkages in type 2 diabetes (T2D) through genome-wide associations, disease similarities, and published empirical evidence. Ten environmental chemicals were found to be potentially linked to T2D, the highest scores were observed for arsenic, 2,3,7,8-tetrachlorodibenzo-p-dioxin, hexachlorobenzene, and perfluorooctanoic acid. For these substances we integrated disease and pathway annotations on top of protein interactions to reveal possible pathogenetic pathways that deserve empirical testing. The approach is general and can address other public health concerns in addition to identifying diabetogenic chemicals, and offers thus promising guidance for future research in regard to the etiology and pathogenesis of complex diseases.
Published Version: 10.1038/srep02712
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12605448
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search