Show simple item record

dc.contributor.authorBatorsky, Rebecca Emily
dc.contributor.authorSergeev, Rinat Alexandrovich
dc.contributor.authorRouzine, Igor M.
dc.date.accessioned2014-08-05T20:08:48Z
dc.date.issued2014-08-05
dc.identifier.citationBatorsky, Rebecca Emily, Rinat Alexandrovich Sergeev, and Igor M. Rouzine. Forthcoming. "The Route of HIV Escape from Immune Response Targeting Multiple Sites Is Determined by the Cost-Benefit Tradeoff of Escape Mutations." PLoS Computational Biology.en_US
dc.identifier.issn1553-734Xen_US
dc.identifier.issn1553-7358en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:12670782
dc.description.abstractCytotoxic T lymphocytes (CTL) are a major factor in the control of HIV replication. CTL arise in acute infection causing escape mutations to spread rapidly through the population of infected cells. As a result, the virus develops partial resistance to the immune response. The factors controlling the order of mutating epitope sites are currently unknown and would provide a valuable tool for predicting conserved epitopes. In this work, we adapt a well-established mathematical model of HIV evolution under dynamical selection pressure from multiple CTL clones to include partial impairment of CTL recognition, ∆r, as well as cost to viral replication, ∆f. The process of escape is described in terms of the cost-benefit tradeoff of escape mutations and predicts a trajectory in the cost-benefit plane connecting sequentially escaped sites, which moves from high recognition loss/low fitness cost to low recognition loss/high fitness cost and has a larger slope for early escapes than for late escapes. The slope of the trajectory offers an interpretation of positive correlation between fitness costs and HLA binding impairment to HLA-A molecules and a protective subset of HLA-B molecules that was observed for clinically relevant escape mutations in the Pol gene. We estimate the value of ∆r from published experimental studies to be in the range (0.01-0.86) and show that the assumption of complete recognition loss (∆r = 1) leads to an overestimate of mutation cost. Our analysis offers a consistent interpretation of the commonly observed pattern of escape, in which several escape mutations are observed transiently in an epitope. This non-nested pattern is a combined effect of temporal changes in selection pressure and partial recognition loss. We conclude that partial recognition loss is as important as fitness loss for predicting the order of escapes and, ultimately, for predicting conserved epitopes that can be targeted by vaccines.en_US
dc.description.sponsorshipOther Research Uniten_US
dc.language.isoen_USen_US
dc.publisherPublic Library of Scienceen_US
dash.licenseLAA
dc.titleThe Route of HIV Escape from Immune Response Targeting Multiple Sites Is Determined by the Cost-Benefit Tradeoff of Escape Mutationsen_US
dc.typeJournal Articleen_US
dc.description.versionAuthor's Originalen_US
dc.relation.journalPLoS Computational Biologyen_US
dash.depositing.authorSergeev, Rinat Alexandrovich
dc.date.available2014-08-05T20:08:48Z
dash.hope.year2014en_US
dash.contributor.affiliatedSergeev, Rinat
dash.contributor.affiliatedBatorsky, Rebecca E.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record