Show simple item record

dc.contributor.authorDilly, G. F.
dc.contributor.authorYoung, C. R.
dc.contributor.authorLane, W. S.
dc.contributor.authorPangilinan, J.
dc.contributor.authorGirguis, Peter R.
dc.date.accessioned2014-09-02T12:36:30Z
dc.date.issued2012
dc.identifier.citationDilly, G. F., C. R. Young, W. S. Lane, J. Pangilinan, and P. R. Girguis. 2012. “Exploring the Limit of Metazoan Thermal Tolerance via Comparative Proteomics: Thermally Induced Changes in Protein Abundance by Two Hydrothermal Vent Polychaetes.” Proceedings of the Royal Society B: Biological Sciences 279, no. 1741: 3347–3356.en_US
dc.identifier.issn0962-8452en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:12763599
dc.description.abstractTemperatures around hydrothermal vents are highly variable, ranging from near freezing up to 300°C. Nevertheless, animals thrive around vents, some of which live near the known limits of animal thermotolerance. Paralvinella sulfincola, an extremely thermotolerant vent polychaete, and Paralvinella palmiformis, a cooler-adapted congener, are found along the Juan de Fuca Ridge in the northwestern Pacific. We conducted shipboard high-pressure thermotolerance experiments on both species to characterize the physiological adaptations underlying P. sulfincola's pronounced thermotolerance. Quantitative proteomics, expressed sequence tag (EST) libraries and glutathione assays revealed that P. sulfincola (i) exhibited an upregulation in the synthesis and recycling of glutathione with increasing temperature, (ii) downregulated nicotinamide adenine dinucleotide (NADH) and succinate dehydrogenases (key enzymes in oxidative phosphorylation) with increasing temperature, and (iii) maintained elevated levels of heat shock proteins (HSPs) across all treatments. In contrast, P. palmiformis exhibited more typical responses to increasing temperatures (e.g. increasing HSPs at higher temperatures). These data reveal differences in how a mesotolerant and extremely thermotolerant eukaryote respond to thermal stress, and suggest that P. sulfincola's capacity to mitigate oxidative stress via increased synthesis of antioxidants and decreased flux through the mitochondrial electron transport chain enable pronounced thermotolerance. Ultimately, oxidative stress may be the key factor in limiting all metazoan thermotolerance.en_US
dc.description.sponsorshipOrganismic and Evolutionary Biologyen_US
dc.language.isoen_USen_US
dc.publisherThe Royal Societyen_US
dc.relation.isversionofdoi:10.1098/rspb.2012.0098en_US
dash.licenseOAP
dc.subjectproteomicsen_US
dc.subjecthydrothermal ventsen_US
dc.subjectthermotoleranceen_US
dc.subjectoxidative stressen_US
dc.subjectParalvinellaen_US
dc.titleExploring the limit of metazoan thermal tolerance via comparative proteomics: thermally induced changes in protein abundance by two hydrothermal vent polychaetesen_US
dc.typeJournal Articleen_US
dc.description.versionAccepted Manuscripten_US
dc.relation.journalProceedings of the Royal Society B: Biological Sciencesen_US
dash.depositing.authorGirguis, Peter R.
dc.date.available2014-09-02T12:36:30Z
dc.identifier.doi10.1098/rspb.2012.0098*
workflow.legacycommentsFAR 2012en_US
dash.contributor.affiliatedGirguis, Peter


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record