Wnts Enhance Neurotrophin-Induced Neuronal Differentiation in Adult Bone-Marrow-Derived Mesenchymal Stem Cells via Canonical and Noncanonical Signaling Pathways

View/ Open
Author
Tsai, Hung-Li
Deng, Wing-Ping
Chiu, Wen-Ta
Yang, Charn-Bing
Tsai, Yu-Hui
Hwang, Shiaw-Min
Renshaw, Perry F.
Note: Order does not necessarily reflect citation order of authors.
Published Version
https://doi.org/10.1371/journal.pone.0104937Metadata
Show full item recordCitation
Tsai, Hung-Li, Wing-Ping Deng, Wen-Fu Thomas Lai, Wen-Ta Chiu, Charn-Bing Yang, Yu-Hui Tsai, Shiaw-Min Hwang, and Perry F. Renshaw. 2014. “Wnts Enhance Neurotrophin-Induced Neuronal Differentiation in Adult Bone-Marrow-Derived Mesenchymal Stem Cells via Canonical and Noncanonical Signaling Pathways.” PLoS ONE 9 (8): e104937. doi:10.1371/journal.pone.0104937. http://dx.doi.org/10.1371/journal.pone.0104937.Abstract
Wnts were previously shown to regulate the neurogenesis of neural stem or progenitor cells. Here, we explored the underlying molecular mechanisms through which Wnt signaling regulates neurotrophins (NTs) in the NT-induced neuronal differentiation of human mesenchymal stem cells (hMSCs). NTs can increase the expression of Wnt1 and Wnt7a in hMSCs. However, only Wnt7a enables the expression of synapsin-1, a synaptic marker in mature neurons, to be induced and triggers the formation of cholinergic and dopaminergic neurons. Human recombinant (hr)Wnt7a and general neuron makers were positively correlated in a dose- and time-dependent manner. In addition, the expression of synaptic markers and neurites was induced by Wnt7a and lithium, a glycogen synthase kinase-3β inhibitor, in the NT-induced hMSCs via the canonical/β-catenin pathway, but was inhibited by Wnt inhibitors and frizzled-5 (Frz5) blocking antibodies. In addition, hrWnt7a triggered the formation of cholinergic and dopaminergic neurons via the non-canonical/c-jun N-terminal kinase (JNK) pathway, and the formation of these neurons was inhibited by a JNK inhibitor and Frz9 blocking antibodies. In conclusion, hrWnt7a enhances the synthesis of synapse and facilitates neuronal differentiation in hMSCS through various Frz receptors. These mechanisms may be employed widely in the transdifferentiation of other adult stem cells.Other Sources
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149376/pdf/Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:12987388
Collections
- HMS Scholarly Articles [18278]
Contact administrator regarding this item (to report mistakes or request changes)