Stiffness of the Crystal-Liquid Interface in a Hard-Sphere Colloidal System Measured from Capillary Fluctuations

DSpace/Manakin Repository

Stiffness of the Crystal-Liquid Interface in a Hard-Sphere Colloidal System Measured from Capillary Fluctuations

Citable link to this page

 

 
Title: Stiffness of the Crystal-Liquid Interface in a Hard-Sphere Colloidal System Measured from Capillary Fluctuations
Author: Ramsteiner, I. B.; Weitz, David A.; Spaepen, Frans A.

Note: Order does not necessarily reflect citation order of authors.

Citation: Ramsteiner, I. B., D. A. Weitz, and F. Spaepen. 2010. Stiffness of the Crystal-Liquid Interface in a Hard-Sphere Colloidal System Measured from Capillary Fluctuations. Physical Review E 82, no. 4: 041603.
Full Text & Related Files:
Abstract: Face-centered cubic single crystals of \(σ=1.55 μm\) diameter hard-sphere silica colloidal particles were prepared by sedimentation onto (100) and (110) oriented templates. The crystals had a wide interface with the overlaying liquid that was parallel to the template. The location of the interface was determined by confocal microscopic location of the particles, followed by identification of the crystalline and liquid phases by a bond-orientation order parameter. Fluctuations in the height of the interface about its average position were recorded for several hundred configurations. The interfacial stiffness \(γ̃\) was determined from the slope of the inverse squared Fourier components of the height profile vs the square of the wave number, according to the continuum capillary fluctuation method. The offset of the fit from the origin could quantitatively be accounted for by gravitational damping of the fluctuations. For the (100) interface, \(γ̃ =(1.3±0.3)k_{B}T/σ^{2}\); for the (110) interface, \(γ̃ =(1.0±0.2)k_{B}T/σ^{2}\). The interfacial stiffness of both interfaces was found to be isotropic in the plane. This is surprising for the (110), where crystallography predicts twofold symmetry. Sedimentation onto a (111) template yielded a randomly stacked hexagonal crystal with isotropic \(γ̃ =0.66k_{B}T/σ^{2}\). This value, however, is less reliable than the two others due to imperfections in the crystal.
Published Version: doi:10.1103/PhysRevE.82.041603
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:13041039
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters