Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole

DSpace/Manakin Repository

Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole

Citable link to this page

 

 
Title: Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole
Author: Tchekhovskoy, Alexander; Narayan, Ramesh; McKinney, Jonathan C.

Note: Order does not necessarily reflect citation order of authors.

Citation: Tchekhovskoy, Alexander, Ramesh Narayan, and Jonathan C. McKinney. 2011. “Efficient Generation of Jets from Magnetically Arrested Accretion on a Rapidly Spinning Black Hole.” Monthly Notices of the Royal Astronomical Society: Letters 418, no. 1: L79–L83.
Full Text & Related Files:
Abstract: We describe global, 3D, time‐dependent, non‐radiative, general‐relativistic, magnetohydrodynamic simulations of accreting black holes (BHs). The simulations are designed to transport a large amount of magnetic flux to the centre, more than the accreting gas can force into the BH. The excess magnetic flux remains outside the BH, impedes accretion, and leads to a magnetically arrested disc. We find powerful outflows. For a BH with spin parameter a = 0.5, the efficiency with which the accretion system generates outflowing energy in jets and winds is η≈ 30 per cent. For a = 0.99, we find η≈ 140 per cent, which means that more energy flows out of the BH than flows in. The only way this can happen is by extracting spin energy from the BH. Thus the a = 0.99 simulation represents an unambiguous demonstration, within an astrophysically plausible scenario, of the extraction of net energy from a spinning BH via the Penrose–Blandford–Znajek mechanism. We suggest that magnetically arrested accretion might explain observations of active galactic nuclei with apparent η≈ few × 100 per cent.
Published Version: doi:10.1111/j.1745-3933.2011.01147.x
Other Sources: http://arxiv.org/abs/1108.0412
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:13041306
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters