Buckling-induced encapsulation of structured elastic shells under pressure

DSpace/Manakin Repository

Buckling-induced encapsulation of structured elastic shells under pressure

Citable link to this page


Title: Buckling-induced encapsulation of structured elastic shells under pressure
Author: Shim, J.; Perdigou, C.; Chen, E. R.; Bertoldi, Katia; Reis, P. M.

Note: Order does not necessarily reflect citation order of authors.

Citation: Shim, J., C. Perdigou, E. R. Chen, K. Bertoldi, and P. M. Reis. 2012. “Buckling-Induced Encapsulation of Structured Elastic Shells Under Pressure.” Proceedings of the National Academy of Sciences 109 (16) (April 17): 5978–5983. doi:10.1073/pnas.1115674109. http://dx.doi.org/10.1073/pnas.1115674109.
Full Text & Related Files:
Abstract: We introduce a class of continuum shell structures, the Buckliball, which undergoes a structural transformation induced by buckling under pressure loading. The geometry of the Buckliball comprises a spherical shell patterned with a regular array of circular voids. In order for the pattern transformation to be induced by buckling, the possible number and arrangement of these voids are found to be restricted to five specific configurations. Below a critical internal pressure, the narrow ligaments between the voids buckle, leading to a cooperative buckling cascade of the skeleton of the ball. This ligament buckling leads to closure of the voids and a reduction of the total volume of the shell by up to 54%, while remaining spherical, thereby opening the possibility of encapsulation. We use a combination of precision desktop-scale experiments, finite element simulations, and scaling analyses to explore the underlying mechanics of these foldable structures, finding excellent qualitative and quantitative agreement. Given that this folding mechanism is induced by a mechanical instability, our Buckliball opens the possibility for reversible encapsulation, over a wide range of length scales.
Published Version: doi:10.1073/pnas.1115674109
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:13065006
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search