Niche incumbency, dispersal limitation and climate shape geographical distributions in a species-rich island adaptive radiation

DSpace/Manakin Repository

Niche incumbency, dispersal limitation and climate shape geographical distributions in a species-rich island adaptive radiation

Citable link to this page

 

 
Title: Niche incumbency, dispersal limitation and climate shape geographical distributions in a species-rich island adaptive radiation
Author: Algar, Adam C.; Mahler, D. Luke; Glor, Richard E.; Losos, Jonathan

Note: Order does not necessarily reflect citation order of authors.

Citation: Algar, Adam C., D. Luke Mahler, Richard E. Glor, and Jonathan B. Losos. 2012. “Niche Incumbency, Dispersal Limitation and Climate Shape Geographical Distributions in a Species-Rich Island Adaptive Radiation.” Global Ecology and Biogeography 22, no. 4: 391–402.
Access Status: Full text of the requested work is not available in DASH at this time (“dark deposit”). For more information on dark deposits, see our FAQ.
Full Text & Related Files:
Abstract: Aim:

To test the role of climate, dispersal limitation and biotic interactions in limiting species' distributions within an island adaptive radiation by integrating species traits, phylogeny and estimates of dispersal cost into climate-based species distribution models.
Location:

Hispaniola.
Methods:

Focusing on 26 species of Anolis lizards, we used multivariate adaptive regression splines to evaluate the contribution of climate, species interactions, phylogenetic history and dispersal limitation to species distributional limits. For each species, we mapped the morphological similarity of congenerics using traits of known ecological import and predicted that species would be less likely to occur in climatically suitable areas if they were inhabited by ecologically similar species. Dispersal limitation was incorporated by generating spatially explicit estimates of dispersal cost, based on inferred habitat suitability. We compared models including morphological similarity, dispersal cost, phylogeny and climate with climate-only models. Results were evaluated against a null model that conserved the spatial structure of species occurrences.
Results:

Climate had a dominant role in shaping species distributions. However, for over one-third of species we also found evidence consistent with supplemental effects of species interactions, i.e. ecological niche incumbency. These species were less likely to occur in climatically suitable areas inhabited by a morphologically similar species. Dispersal limitation also supplemented climatic limits in most species. These results were robust to co-variation with phylogeny and to comparison with our null model.
Conclusions:

These results suggest that, rather than act as mutually exclusive alternatives, multiple dimensions of the ecological niche, including climatic limits, biotic interactions and dispersal capacity, interact to shape species distributions and that local interactions can influence the broad-scale geography of species in a predictable way.
Published Version: doi:10.1111/geb.12003
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:13362666
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters